Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928235

RESUMEN

The reaction mechanism of tthe formation of azomethine ylides from isatins and sarcosine is addressed in the literature in a general manner. This computational study aims to explore the mechanistic steps for this reaction in detail and to assess the reactivity of formed ylide in a 1,3-dipolar cycloaddition reaction with 7-oxabenzonorbornadiene. For this purpose, density functional theory (DFT) calculations at the M06-2X(SMD,EtOH)/6-31G(d,p) level were employed. The results indicate that CO2 elimination is the rate-determining step, the activation barrier for 1,3-dipolar cycloaddition is lower, and the formed ylide will readily react with dipolarophiles. The substitution of isatine with electron-withdrawal groups slightly decreases the activation barrier for ylide formation.


Asunto(s)
Compuestos Azo , Reacción de Cicloadición , Sarcosina , Tiosemicarbazonas , Tiosemicarbazonas/química , Compuestos Azo/química , Sarcosina/química , Sarcosina/análogos & derivados , Isatina/química , Modelos Moleculares , Teoría Funcional de la Densidad , Norbornanos/química , Estructura Molecular
2.
Int J Mol Sci ; 25(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38791607

RESUMEN

This work investigated the cocatalytic activity of recently prepared guanidinium salts containing an oxanorbornane subunit in an (S)-proline-catalyzed aldol reaction. The activity was interpreted by the diastereoselectivity of the reaction (anti/syn ratio) and for the most interesting polycyclic guanidinium salt, the enantioselectivity of the reaction was determined. The results indicated a negative impact on the oxanorbornane unit if present as the flexible substituent. For most of the tested aldehydes, the best cocatalysts provided enantioselectivities above 90% and above 95% at room temperature and 0 °C, respectively, culminating in >99.5% for 4-chloro- and 2-nitrobenzaldehyde as the substrate. The barriers for forming four possible enantiomers were calculated and the results for two anti-enantiomers are qualitatively consistent with the experiment. Obtained results suggest that the representatives of furfurylguanidinium and rigid polycyclic oxanorbornane-substituted guanidinium salts are good lead structures for developing new cocatalysts by tuning the chemical space around the guanidine moiety.


Asunto(s)
Guanidinas , Prolina , Catálisis , Prolina/química , Guanidinas/química , Estereoisomerismo , Aldehídos/química , Norbornanos/química , Guanidina/química , Estructura Molecular
3.
Molecules ; 28(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903463

RESUMEN

A proposed mechanism of the reaction of guanidinium chlorides with dimethyl acetylenedicarboxylate in a tandem aza-Michael addition reaction/intramolecular cyclization was investigated by DFT M06-2X and B3LYP computational approaches. The energies of the products were compared against the G3, M08-HX, M11, and wB97xD data or experimentally obtained product ratios. The structural diversity of the products was interpreted by the concurrent formation of different tautomers formed in situ upon deprotonation with a 2-chlorofumarate anion. A comparison of relative energies of the characteristic stationary points along the examined reaction paths indicated that the initial nucleophilic addition is energetically the most demanding process. The overall reaction is strongly exergonic, as predicted by both methods, which is primarily due to methanol elimination during the intramolecular cyclization step producing cyclic amide structures. Formation of a five-membered ring upon intramolecular cyclization is highly favored for the acyclic guanidine, while optimal product structure for the cyclic guanidines is based on a 1,5,7-triaza [4.3.0]-bicyclononane skeleton. Relative stabilities of the possible products calculated by the employed DFT methods were compared against the experimental product ratio. The best agreement was obtained for the M08-HX approach while the B3LYP approach provided somewhat better results than the M06-2X and M11 methods.

4.
Molecules ; 28(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36903588

RESUMEN

Density functional calculations SMD(chloroform)//B3LYP/6-311+G(2d,p) were employed in the computational study of 1,3-dipolar cycloadditions of azides with guanidine. The formation of two regioisomeric tetrazoles and their rearrangement to cyclic aziridines and open-chain guanidine products were modeled. The results suggest the feasibility of an uncatalyzed reaction under very drastic conditions since the thermodynamically preferred reaction path (a), which involves cycloaddition by binding the carbon atom from guanidine to the terminal azide nitrogen atom, and the guanidine imino nitrogen with the inner N atom from the azide, has an energy barrier higher than 50 kcal mol-1. The formation of the other regioisomeric tetrazole (imino nitrogen interacts with terminal N atom of azide) in direction (b) can be more favorable and proceed under milder conditions if alternative activation of the nitrogen molecule releases (e.g., photochemical activation), or deamination could be achieved because these processes have the highest barrier in the less favorable (b) branch of the mechanism. The introduction of substituents should favorably affect the cycloaddition reactivity of the azides, with the greatest effects expected for the benzyl and perfluorophenyl groups.

5.
Acc Chem Res ; 54(15): 3108-3123, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34308625

RESUMEN

ConspectusOne of the constant challenges of synthetic chemistry is the molecular design and synthesis of nonionic, metal-free superbases as chemically stable neutral organic compounds of moderate molecular weight, intrinsically high thermodynamic basicity, adaptable kinetic basicity, and weak or tunable nucleophilicity at their nitrogen, phosphorus, or carbon basicity centers. Such superbases can catalyze numerous reactions, ranging from C-C bond formation to cycloadditions and polymerization, to name just a few. Additional benefits of organic superbases, as opposed to their inorganic counterparts, are their solubility in organic reaction media, mild reaction conditions, and higher selectivity. Approaching such superbasic compounds remains a continuous challenge. However, recent advances in synthetic methodology and theoretical understanding have resulted in new design principles and synthetic strategies toward superbases. Our computational contributions have demonstrated that the gas-phase basicity region of 350 kcal mol-1 and even beyond is easily reachable by organosuperbases. However, despite record-high basicities, the physical limitations of many of these compounds become quickly evident. The typically large molecular weight of these molecules and their sensitivity to ordinary reaction conditions prevent them from being practical, even though their preparation is often not too difficult. Thus, obviously structural limitations with respect to molecular weight and structural complexity must be imposed on the design of new synthetically useful organic superbases, but strategies for increasing their basicity remain important.The contemporary design of novel organic superbases is illustrated by phosphazenyl phosphanes displaying gas-phase basicities (GB) above 300 kcal mol-1 but having molecular weights well below 1000 g·mol-1. This approach is based on a reconsideration of phosphorus(III) compounds, which goes along with increasing their stability in solution. Another example is the preparation of carbodiphosphoranes incorporating pyrrolidine, tetramethylguanidine, or hexamethylphosphazene as a substituent. With gas-phase proton affinities of up to 300 kcal mol-1, they are among the top nonionic carbon bases on the basicity scale. Remarkably, the high basicity of these compounds is achieved at molecular weights of around 600 g·mol-1. Another approach to achieving high basicity through the cooperative effect of multiple intramolecular hydrogen bonding, which increases the stabilization of conjugate acids, has recently been confirmed.This Account focuses on our efforts to produce superbasic molecules that embody many desirable traits, but other groups' approaches will also be discussed. We reveal the crucial structural features of superbases and place them on known basicity scales. We discuss the emerging potential and current limits of their application and give a general outlook into the future.

6.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36555678

RESUMEN

The cycloaddition of simple alkyl-substituted guanidine derivatives is an interesting approach toward polycyclic superbases and guanidine-based organocatalysts. Due to the high nucleophilicity of guanidines, an aza-Michael reaction with dienophiles is more common and presents a huge obstacle in achieving the desired synthetic goal. Our preliminary investigations indicated that the proton could act as a suitable protecting group to regulate the directionality of the reaction. To investigate the role of the protonation state and type of anion, the reactivity of furfuryl guanidines with dimethyl acetylenedicarboxylate was explored. Furfuryl guanidines showed a strong reaction dependence on the nucleophilicity of the counterion and the structure of guanidine. While the reaction of DMAD with the guanidinium halides provided products of an aza-Michael addition, Diels-Alder cycloaddition occurred if non-nucleophilic hexafluorophosphate salts were used. Depending on the structure and the reaction conditions, oxanorbornadiene products underwent subsequent intramolecular cyclization. A tendency toward intramolecular cyclization was interpreted in terms of the pKa of different positions of the guanidine functionality in oxanorbornadienes. New polycyclic guanidines had a slightly decreased pKa in acetonitrile and well-defined geometry suitable for the buildup of selective sensors.


Asunto(s)
Guanidinas , Guanidina/química , Guanidinas/química , Ciclización , Aniones
7.
Molecules ; 27(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36558087

RESUMEN

Synthesis of N,N'-Di-Boc-2H-isoindole-2-carboxamidine, the first representative of isoindoles containing guanidine functionality, was carried out. The cycloaddition reactivity of this new Diels-Alder heterodiene was studied and the title compound was employed as a cycloaddition delivery reagent for guanidine functionality. Higher reactivity was found in comparison with the corresponding pyrrole derivative. Substitution with fluorine or guanidine functionality does not change the reactivities of isoindoles, and these findings are in good accord with computational results.


Asunto(s)
Guanidinas , Isoindoles , Guanidina , Indicadores y Reactivos , Reacción de Cicloadición
8.
Beilstein J Org Chem ; 18: 746-753, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35821693

RESUMEN

The solution phase 1,2-debromination of polycyclic imides using the Zn/Ag couple was successfully transferred to solid state mechanochemical conditions. The Zn/Ag couple was replaced by the Zn/Cu couple which was prepared without any metal activation by in situ ball milling of zinc and copper dusts. The advantage of the ball milling process is that the whole procedure is operationally very simplified. The reactive alkene generated was trapped in situ by several dienes and the respective Diels-Alder cycloadducts were obtained. It was demonstrated that mechanochemical milling offers complementary conditions to solution (thermal) reaction by allowing chemical transformations to proceed which were not possible in solution and vice versa.

9.
Photodermatol Photoimmunol Photomed ; 37(4): 296-305, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33404073

RESUMEN

BACKGROUND: Antibiotic resistance is increasing day by day, thereby increase the chances of more infections by resistant bacteria. In this situation, antimicrobial photodynamic therapy (aPDT) is gaining more attraction. OBJECTIVE: To evaluate the antimicrobial effect of ALA derivatives using photodynamic therapy. MATERIALS AND METHODS: In this study, we evaluated the aPDT effect of different derivatives of 5-ALA. In vivo and in vitro studies were performed to measure the antimicrobial activity. Different light doses and different concentrations of drugs were used to test anti-bacterial effect of drugs as well as to detect any physiological changes in animal model after the treatment. RESULTS: In vivo studies revealed that ALA-methyl ester, ALA-hexyl ester, and ALA-13A are potent photosensitizers. In vitro studies involved wound healing rate, body weight, and dietary intake were evaluated, and results showed that ALA, ALA-methyl ester, ALA-hexyl ester, and ALA-13A had good anti-bacterial effects, fast healing rate, and no effect on other physical parameters. CONCLUSION: Photodynamic therapy is increasingly used to treat different types of skin infections caused by bacterial strains. Our studies revealed that ALA-methyl ester, ALA-hexyl ester, and ALA-13A are promising photosensitizers for photodynamic therapy to inhibit the growth of resistant bacterial strains.


Asunto(s)
Antiinfecciosos , Fotoquimioterapia , Ácido Aminolevulínico/farmacología , Animales , Antiinfecciosos/farmacología , Ésteres , Preparaciones Farmacéuticas , Fármacos Fotosensibilizantes/farmacología
10.
J Org Chem ; 84(2): 526-535, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30543108

RESUMEN

We revisit the mechanism of reaction between a model lysine side chain and reactive aldehyde 4-hydroxynonenal in different solvents with an increasing water content. We show by model organic reactions and qualitative spectrometric analysis that a nonpolar pyrrole adduct is dominantly formed in non-aqueous solvents dichloromethane and acetonitrile. On the other hand, in aqueous acetonitrile and neat water, other polar products are also isolated, including Michael adducts, hemiacetal adducts, and pyridinium salt adducts, at the same time as the ratio of nonpolar products to polar products is decreasing. The experiments are supported by detailed quantum chemical calculations of the reaction mechanism with different computational setups showing that the pyrrole adduct is the most thermodynamically stable product compared to Michael adducts and hemiacetal adducts and also indicating that water molecules released along the reaction pathway are catalyzing reaction steps involving proton transfer. Finally, we also identify the mechanism of the pyridinium salt adduct that is formed only in aqueous solutions.

11.
Beilstein J Org Chem ; 15: 1313-1320, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293680

RESUMEN

Friedel-Crafts (FC) acylation reactions were exploited in the preparation of ketone-functionalized aromatics. Environmentally more friendly, solvent-free mechanochemical reaction conditions of this industrially important reaction were developed. Reaction parameters such as FC catalyst, time, ratio of reagents and milling support were studied to establish the optimal reaction conditions. The scope of the reaction was explored by employment of different aromatic hydrocarbons in conjunction with anhydrides and acylation reagents. It was shown that certain FC-reactive aromatics could be effectively functionalized by FC acylations carried out under ball-milling conditions without the presence of a solvent. The reaction mechanism was studied by in situ Raman and ex situ IR spectroscopy.

12.
Bioorg Med Chem Lett ; 28(10): 1785-1791, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29673979

RESUMEN

A novel 131-pyridine substituted chlorin e6 derivative (Chlorin A) was synthesized. It has characteristic long wavelength absorption at 664 nm and the emission wavelength at 667 nm. The generation rate of singlet oxygen of this compound is higher than Temoporfin. In vitro, Chlorin A showed higher phototoxicity against the human esophageal cancer cells than Temoporfin while with lower dark-toxicity. Its accumulation effect in mitochondria, lysosomes and endoplasmic reticulum was traced in subcellular localization tests. In flow cytometry obvious apoptosis cells were observed after 2 h irradiation. Significant in vivo photodynamic anti-tumor efficacy was also exhibited on mice bearing esophageal cancer. So Chlorin A could be suggested as a promising anti-tumor drug candidate in photodynamic therapy.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Esofágicas/tratamiento farmacológico , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Porfirinas/farmacología , Piridinas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Neoplasias Esofágicas/patología , Humanos , Ratones , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Porfirinas/síntesis química , Porfirinas/química , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad
13.
Molecules ; 23(12)2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30513686

RESUMEN

Mechanochemical ball milling catalytic transfer hydrogenation (CTH) of aromatic nitro compounds using readily available and cheap ammonium formate as the hydrogen source is demonstrated as a simple, facile and clean approach for the synthesis of substituted anilines and selected pharmaceutically relevant compounds. The scope of mechanochemical CTH is broad, as the reduction conditions tolerate various functionalities, for example nitro, amino, hydroxy, carbonyl, amide, urea, amino acid and heterocyclic. The presented methodology was also successfully integrated with other types of chemical reactions previously carried out mechanochemically, such as amide bond formation by coupling amines with acyl chlorides or anhydrides and click-type coupling reactions between amines and iso(thio)cyanates. In this way, we showed that active pharmaceutical ingredients Procainamide and Paracetamol could be synthesized from the respective nitro-precursors on milligram and gram scale in excellent isolated yields.


Asunto(s)
Hidrocarburos Aromáticos/química , Nitrocompuestos/química , Compuestos de Anilina/química , Catálisis , Hidrogenación , Espectroscopía Infrarroja por Transformada de Fourier
14.
Chem Res Toxicol ; 30(3): 840-850, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28222263

RESUMEN

4-Hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) are biologically important reactive aldehydes formed during oxidative stress in phospholipid bilayers. They are highly reactive species due to presence of several reaction centers and can react with amino acids in peptides and proteins, as well as phosphoethanolamine (PE) lipids, thus modifying their biological activity. The aim of this work is to study in a molecular detail the reactivity of HNE and ONE toward PE lipids in a simplified system containing only lipids and reactive aldehydes in dichloromethane as an inert solvent. We use a combination of quantum chemical calculations, 1H NMR measurements, FT-IR spectroscopy, and mass spectrometry experiments and show that for both reactive aldehydes two types of chemical reactions are possible: formation of Michael adducts and Schiff bases. In the case of HNE, an initially formed Michael adduct can also undergo an additional cyclization step to a hemiacetal derivative, whereas no cyclization occurs in the case of ONE and a Michael adduct is identified. A Schiff base product initially formed when HNE is added to PE lipid can also further cyclize to a pyrrole derivative in contrast to ONE, where only a Schiff base product is isolated. The suggested reaction mechanism by quantum-chemical calculations is in a qualitative agreement with experimental yields of isolated products and is also additionally investigated by 1H NMR measurements, FT-IR spectroscopy, and mass spectrometry experiments.


Asunto(s)
Aldehídos/química , Fosfatidiletanolaminas/química , Espectrometría de Masas , Espectroscopía de Protones por Resonancia Magnética , Espectroscopía Infrarroja por Transformada de Fourier
15.
Angew Chem Int Ed Engl ; 56(11): 3090-3093, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28229512

RESUMEN

Herein we present the first superbase MHPN with two interacting P-ylide entities. Unlike classical proton sponges, this novel compound class has carbon atoms as basicity centers which are forced into close proximity by a naphthalene scaffold. The bisylide exhibits an experimental pKBH+  value of 33.3±0.2 on the MeCN scale and a calculated gas-phase proton affinity of 277.9 kcal mol-1 (M062X/6-311+G**//M062X/6-31G*+ZPVE method) exceeding that of the corresponding monoylide by nearly 15 kcal mol-1 . The origin of the unexpectedly high basicity of the new bisylide was investigated by NMR spectroscopic methods, single-crystal X-ray diffraction as well as theoretical calculations and can be partly attributed to the rapid exchange of the "acidic" proton between the two basic carbon atoms after protonation.

16.
Beilstein J Org Chem ; 13: 1745-1752, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28904618

RESUMEN

The mechanochemical N-alkylation of imide derivatives was studied. Reactions under solvent-free conditions in a ball mill gave good yields and could be put in place of the classical solution conditions. The method is general and can be applied to various imides and alkyl halides. Phthalimides prepared under ball milling conditions were used in a mechanochemical Gabriel synthesis of amines by their reaction with 1,2-diaminoethane.

17.
Tumour Biol ; 37(5): 6923-33, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26662801

RESUMEN

A novel porphyrin derivative, 5, 10, 15, 20-tetrakis (5-morpholinopentyl)-21H, 23H-Porphin (MPP, 4) and its photophysical characteristics, therapeutic efficacy of photodynamic therapy (PDT) in vitro and in vivo, tumor selectivity, and clearance from normal tissues were investigated here. MPP has strong absorption at relatively long wavelength (λmax = 648 nm, molar absorption coefficient ε ∼ 17,200 M(-1)cm(-1)) and can emit strong fluorescence at 653 and 718 nm. When administered to the animal tumor models by tail vein injection, MPP was capable of accumulating in the tumor site, as examined in vivo with the fluorescence signal of MPP. By the combination of MPP and a 650-nm laser irradiation, the viability of T24 cells could decrease by 4.37 %, and inhibition rate of T24 tumor could increase up to 91.21 % compared with control group, demonstrating the potential of MPP as an effective photosensitizer in PDT for tumor treatment.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Fotoquimioterapia , Porfirinas/síntesis química , Porfirinas/farmacología , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Ratones , Análisis Espectral , Distribución Tisular , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
18.
J Phys Chem A ; 120(36): 7088-100, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27556411

RESUMEN

UV/vis spectra of phenylguanidine (PHGU) in the gas phase and in acetonitrile have been simulated by TD-DFT calculations. Several DFT hybrid and long-range corrected functionals were tested with respect to CASPT2 gas phase calculations. Solvent effects were considered using polarizable continuum model (PCM) and compared with the measured data in acetonitrile. Comparison with isoelectronic phenylurea and related phenyltiourea was done as well. The PBE0 and long-range corrected CAM-B3LYP functionals were selected to investigate the effect of protonation on the excitation energies and absorption intensities of PHGU and several guanidine derivatives with different aromatic chromophoric groups (naphthyl, anthracenyl, quinolinyl, anthraquinonyl, and coumarinyl). Also, the effect of complexation and specific interactions through hydrogen bonds with different anions was examined. It was shown that the protonation of the guanidine subunit shifts the low energy absorption bands toward higher energies (hypsochromic shift). The shift is reduced upon complexation with anions. In phenylguanidine salts, λmax values are correlated to the anion basicity and strength of H-bonding. The observed changes diminish upon increase of chromophoric size (naphthyl, anthracenyl). Theoretical predictions of UV/vis spectra correlate well with experimentally measured spectra of selected guanidine derivatives and their salts.


Asunto(s)
Guanidina/química , Espectrofotometría Ultravioleta/métodos , Acetonitrilos/química , Antracenos/química , Antraquinonas/química , Guanidinas/química , Enlace de Hidrógeno , Modelos Químicos , Naftalenos/química , Quinolinas/química , Solventes/química
19.
Nanomedicine (Lond) ; : 1-16, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011648

RESUMEN

Aim: A study of the enhancement of photodynamic activities of pyropheophorbide-a using PG-Ag-PPa nanoconjugates. Materials & methods: The nanoconjugates were formulated from silver nanoparticles and PPa via amide linkage, then characterized, and their photodynamic activities were examined. Results: The nanoconjugates displayed a higher rate of reactive oxygen species generation, commendable cellular uptake by Eca-109 cancer cells, higher photocytotoxicity toward the cancer cells and better bio-safety. They revealed strong antibacterial activity against Escherichia coli following internal reactive oxygen species generation and membrane disintegration. The in vivo anticancer studies confirmed higher cytotoxicity of the nanoconjugates toward cancer cells and better safety than PPa. Conclusion: Therefore, PG-Ag-PPa nanoconjugates could be considered potential nano photosensitizers for photodynamic therapy of tumors and bacterial infection with good bio-safety.


[Box: see text].

20.
Org Biomol Chem ; 9(19): 6771-8, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21850327

RESUMEN

The first example of thermal (8π,6π)-electrocyclisation of 1,3,5,7-octatetraene with one double bond embedded in an aromatic moiety is described. By this process, [3,4]-benzo-8-substituted octatetraene derivatives, the cis,trans-1-(o-vinylphenyl)-4-(R = Me, Ph, 2-furyl)buta-1,3-dienes were transformed to a new endo-7-(R = Me, Ph, 2-furyl) and exo-7-(R = Me)-2,3-benzobicyclo[4.2.0]octa-2,4-dienes. Mechanism of reaction was also studied by DFT quantum-chemical calculations. The M06/6-311+G(d,p)//M06/6-31+G(d,p) calculations indicate that formation of the single endo-isomer in the case of phenyl and 2-furyl substituents is determined by higher activation barriers for exo-6π-electrocyclisation than for 8π-cycloreversion.


Asunto(s)
Ciclooctanos/química , Teoría Cuántica , Temperatura , Ciclización , Ciclooctanos/síntesis química , Estructura Molecular , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA