RESUMEN
Intestinal peristalsis is a dynamic physiologic process influenced by dietary and microbial changes. It is tightly regulated by complex cellular interactions; however, our understanding of these controls is incomplete. A distinct population of macrophages is distributed in the intestinal muscularis externa. We demonstrate that, in the steady state, muscularis macrophages regulate peristaltic activity of the colon. They change the pattern of smooth muscle contractions by secreting bone morphogenetic protein 2 (BMP2), which activates BMP receptor (BMPR) expressed by enteric neurons. Enteric neurons, in turn, secrete colony stimulatory factor 1 (CSF1), a growth factor required for macrophage development. Finally, stimuli from microbial commensals regulate BMP2 expression by macrophages and CSF1 expression by enteric neurons. Our findings identify a plastic, microbiota-driven crosstalk between muscularis macrophages and enteric neurons that controls gastrointestinal motility. PAPERFLICK:
Asunto(s)
Motilidad Gastrointestinal , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/microbiología , Macrófagos/metabolismo , Animales , Proteína Morfogenética Ósea 2/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Tracto Gastrointestinal/inervación , Tracto Gastrointestinal/fisiología , Técnicas In Vitro , Factor Estimulante de Colonias de Macrófagos , Ratones , Neuronas/metabolismo , Peristaltismo , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Transducción de SeñalRESUMEN
Effective delivery of the CRISPR-Cas9 components is crucial to realizing the therapeutic potential. Although many delivery approaches have been developed for this application, oral delivery has not been explored due to the degradative nature of the gastrointestinal tract. For this issue, we developed a series of novel phenylboronic acid (PBA)-functionalized chitosan-polyethylenimine (CS-PEI) polymers for oral CRISPR delivery. PBA functionalization equipped the polyplex with higher stability, smooth transport across the mucus, and efficient endosomal escape and cytosolic unpackaging in the cells. From a library of 12 PBA-functionalized CS-PEI polyplexes, we identified a formulation that showed the most effective penetration in the intestinal mucosa after oral gavage to mice. The optimized formulation performed feasible CRISPR-mediated downregulation of the target protein and reduction in the downstream cholesterol. As the first oral CRISPR carrier, this study suggests the potential of addressing the needs of both local and systemic editing in a patient-compliant manner.
Asunto(s)
Ácidos Borónicos , Quitosano , Animales , Ratones , Polímeros , Técnicas de Transferencia de GenRESUMEN
OBJECTIVE: The effectiveness of µ-opioid receptor (MOPr) agonists for treatment of visceral pain is compromised by constipation, respiratory depression, sedation and addiction. We investigated whether a fentanyl analogue, (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP), which preferentially activates MOPr in acidified diseased tissues, would inhibit pain in a preclinical model of inflammatory bowel disease (IBD) without side effects in healthy tissues. DESIGN: Antinociceptive actions of NFEPP and fentanyl were compared in control mice and mice with dextran sodium sulfate colitis by measuring visceromotor responses to colorectal distension. Patch clamp and extracellular recordings were used to assess nociceptor activation. Defecation, respiration and locomotion were assessed. Colonic migrating motor complexes were assessed by spatiotemporal mapping of isolated tissue. NFEPP-induced MOPr signalling and trafficking were studied in human embryonic kidney 293 cells. RESULTS: NFEPP inhibited visceromotor responses to colorectal distension in mice with colitis but not in control mice, consistent with acidification of the inflamed colon. Fentanyl inhibited responses in both groups. NFEPP inhibited the excitability of dorsal root ganglion neurons and suppressed mechanical sensitivity of colonic afferent fibres in acidified but not physiological conditions. Whereas fentanyl decreased defecation and caused respiratory depression and hyperactivity in mice with colitis, NFEPP was devoid of these effects. NFEPP did not affect colonic migrating motor complexes at physiological pH. NFEPP preferentially activated MOPr in acidified extracellular conditions to inhibit cAMP formation, recruit ß-arrestins and evoke MOPr endocytosis. CONCLUSION: In a preclinical IBD model, NFEPP preferentially activates MOPr in acidified microenvironments of inflamed tissues to induce antinociception without causing respiratory depression, constipation and hyperactivity.
Asunto(s)
Colitis , Neoplasias Colorrectales , Enfermedades Inflamatorias del Intestino , Insuficiencia Respiratoria , Dolor Visceral , Animales , Colitis/inducido químicamente , Colon , Estreñimiento , Fentanilo/efectos adversos , Humanos , Enfermedades Inflamatorias del Intestino/complicaciones , Ratones , Receptores Opioides , Microambiente TumoralRESUMEN
Autism spectrum disorder (ASD) is a common neurobehavioral disorder with limited treatment options. Activation of p38 MAPK signaling networks has been identified in ASD, and p38 MAPK signaling elevates serotonin (5-HT) transporter (SERT) activity, effects mimicked by multiple, hyperfunctional SERT coding variants identified in ASD subjects. Mice expressing the most common of these variants (SERT Ala56) exhibit hyperserotonemia, a biomarker observed in ASD subjects, as well as p38 MAPK-dependent SERT hyperphosphorylation, elevated hippocampal 5-HT clearance, hypersensitivity of CNS 5-HT1A and 5-HT2A/2C receptors, and behavioral and gastrointestinal perturbations reminiscent of ASD. As the α-isoform of p38 MAPK drives SERT activation, we tested the hypothesis that CNS-penetrant, α-isoform-specific p38 MAPK inhibitors might normalize SERT Ala56 phenotypes. Strikingly, 1-week treatment of adult SERT Ala56 mice with MW150, a selective p38α MAPK inhibitor, normalized hippocampal 5-HT clearance, CNS 5-HT1A and 5-HT2A/2C receptor sensitivities, social interactions, and colonic motility. Conditional elimination of p38α MAPK in 5-HT neurons of SERT Ala56 mice restored 5-HT1A and 5-HT2A/2C receptor sensitivities as well as social interactions, mirroring effects of MW150. Our findings support ongoing p38α MAPK activity as an important determinant of the physiological and behavioral perturbations of SERT Ala56 mice and, more broadly, supports consideration of p38α MAPK inhibition as a potential treatment for core and comorbid phenotypes present in ASD subjects.
Asunto(s)
Encéfalo/metabolismo , Tracto Gastrointestinal/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Receptores de Serotonina 5-HT2/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Serotonina/metabolismo , Animales , Trastorno del Espectro Autista/metabolismo , Masculino , Ratones , Fenotipo , Transducción de Señal/fisiologíaRESUMEN
The gastrointestinal (GI) tract is the largest immune organ; in vertebrates, it is the only organ whose function is controlled by its own intrinsic enteric nervous system (ENS), but it is additionally regulated by extrinsic (sympathetic and parasympathetic) innervation. The GI nervous and immune systems are highly integrated in their common goal, which is to unite digestive functions with protection from ingested environmental threats. This review discusses the physiological relevance of enteric neuroimmune integration by summarizing the current knowledge of evolutionary and developmental pathways, cellular organization, and molecular mechanisms of neuroimmune interactions in health and disease.
Asunto(s)
Tracto Gastrointestinal/inmunología , Sistema Inmunológico , Inmunidad Mucosa , Sistema Nervioso , Neuroinmunomodulación , Animales , Evolución Biológica , Tracto Gastrointestinal/inervación , Homeostasis , Humanos , Tolerancia InmunológicaRESUMEN
Autism-spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent deficits in social communication and repetitive patterns of behavior. ASD is, however, often associated with medical comorbidities and gastrointestinal (GI) dysfunction is among the most common. Studies have demonstrated a correlation between GI dysfunction and the degree of social impairment in ASD. The etiology of GI abnormalities in ASD is unclear, though the association between GI dysfunction and ASD-associated behaviors suggest that overlapping developmental defects in the brain and the intestine and/or a defect in communication between the enteric and central nervous systems (ENS and CNS, respectively), known as the gut-brain axis, could be responsible for the observed phenotypes. Brain-gut abnormalities have been increasingly implicated in several disease processes, including ASD. As a critical modulator of ENS and CNS development and function, serotonin may be a nexus for the gut-brain axis in ASD. This paper reviews the role of serotonin in ASD from the perspective of the ENS. A murine model that has been demonstrated to possess brain, behavioral and GI abnormalities mimicking those seen in ASD harbors the most common serotonin transporter (SERT) based mutation (SERT Ala56) found in children with ASD. Discussion of the gut-brain manifestations in the SERT Ala56 mice, and their correction with developmental administration of a 5-HT4 agonist, are also addressed in conjunction with other future directions for diagnosis and treatment.
RESUMEN
Autism-spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent deficits in social communication and repetitive patterns of behavior. ASD is, however, often associated with medical comorbidities and gastrointestinal (GI) dysfunction is among the most common. Studies have demonstrated a correlation between GI dysfunction and the degree of social impairment in ASD. The etiology of GI abnormalities in ASD is unclear, though the association between GI dysfunction and ASD-associated behaviors suggest that overlapping developmental defects in the brain and the intestine and/or a defect in communication between the enteric and central nervous systems (ENS and CNS, respectively), known as the gut-brain axis, could be responsible for the observed phenotypes. Brain-gut abnormalities have been increasingly implicated in several disease processes, including ASD. As a critical modulator of ENS and CNS development and function, serotonin may be a nexus for the gut-brain axis in ASD. This paper reviews the role of serotonin in ASD from the perspective of the ENS. A murine model that has been demonstrated to possess brain, behavioral and GI abnormalities mimicking those seen in ASD harbors the most common serotonin transporter (SERT) based mutation (SERT Ala56) found in children with ASD. Discussion of the gut-brain manifestations in the SERT Ala56 mice, and their correction with developmental administration of a 5-HT4 agonist, are also addressed in conjunction with other future directions for diagnosis and treatment.
Asunto(s)
Trastorno del Espectro Autista/metabolismo , Encéfalo/metabolismo , Microbioma Gastrointestinal , Serotonina/metabolismo , Animales , Humanos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismoRESUMEN
Serotonin (5-hydroxytryptamine; 5-HT) is best known as a neurotransmitter critical for central nervous system (CNS) development and function. 95% of the body's serotonin, however, is produced in the intestine where it has been increasingly recognized for its hormonal, autocrine, paracrine, and endocrine actions. This chapter provides the most current knowledge of the critical autocrine and paracrine roles of 5-HT in intestinal motility and inflammation as well as its function as a hormone in osteocyte homeostasis. Therapeutic applications in each of these areas are also discussed.
Asunto(s)
Sistema Nervioso Entérico/metabolismo , Tracto Gastrointestinal/inervación , Enfermedades Inflamatorias del Intestino/metabolismo , Neuronas Serotoninérgicas/metabolismo , Serotonina/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Remodelación Ósea , Sistema Nervioso Entérico/efectos de los fármacos , Sistema Nervioso Entérico/fisiopatología , Fármacos Gastrointestinales/uso terapéutico , Motilidad Gastrointestinal , Tracto Gastrointestinal/efectos de los fármacos , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/fisiopatología , Neurogénesis , Osteocitos/metabolismo , Osteoporosis/metabolismo , Osteoporosis/fisiopatología , Receptores de Serotonina/metabolismo , Serotoninérgicos/uso terapéutico , Transducción de SeñalAsunto(s)
Infecciones por Coronavirus/complicaciones , Neumonía Viral/complicaciones , Síndrome de Respuesta Inflamatoria Sistémica/complicaciones , Dolor Abdominal/virología , Betacoronavirus , Sedimentación Sanguínea , Proteína C-Reactiva/metabolismo , COVID-19 , Niño , Preescolar , Diarrea/virología , Femenino , Fiebre/virología , Humanos , Imagen por Resonancia Magnética , Masculino , Náusea/virología , Pandemias , Estudios Retrospectivos , SARS-CoV-2 , Albúmina Sérica/metabolismo , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico por imagen , Síndrome de Respuesta Inflamatoria Sistémica/virología , Vómitos/virologíaRESUMEN
Many children and adolescents with autism spectrum disorder (ASD) have significant gastrointestinal (GI) symptoms, but the etiology is currently unknown. Some individuals with ASD show altered reactivity to stress and altered immune markers relative to typically-developing individuals, particularly stress-responsive cytokines including tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). Acute and chronic stress is associated with the onset and exacerbation of GI symptoms in those without ASD. The present study examined whether GI symptoms in ASD were associated with increases in cortisol, a stress-associated endocrine marker, and TNF-α and IL-6 in response to stress. As hypothesized, a greater amount of lower GI tract symptoms were significantly associated with post-stress cortisol concentration. The relationship between cortisol response to stress and GI functioning was greater for children who had a history of regressive autism. Exploratory analyses revealed significant correlations between cortisol response, intelligence, and inappropriate speech. In contrast, symptoms of the lower GI tract were not associated with levels of TNF-α or IL-6. Significant correlations were found, however, between TNF-α and IL-6 and irritability, socialization, and intelligence. These findings suggest that individuals with ASD and symptoms of the lower GI tract may have an increased response to stress, but this effect is not associated with concomitant changes in TNF-α and IL-6. The relationship between cortisol stress response and lower GI tract symptoms in children with regressive autism, as well as the relationships between cortisol, IL-6, and intelligence in ASD, warrant further investigation.
Asunto(s)
Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/inmunología , Enfermedades Gastrointestinales/complicaciones , Enfermedades Gastrointestinales/inmunología , Estrés Psicológico/complicaciones , Estrés Psicológico/inmunología , Adolescente , Niño , Citocinas/metabolismo , Sistema Endocrino/inmunología , Femenino , Humanos , Hidrocortisona/metabolismo , Interleucina-6/metabolismo , Masculino , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
OBJECTIVE: Enterochromaffin cell-derived serotonin (5-HT) promotes intestinal inflammation. We tested hypotheses that peripheral tryptophan hydroxylase (TPH) inhibitors, administered orally, block 5-HT biosynthesis and deplete 5-HT from enterochromaffin cells sufficiently to ameliorate intestinal inflammation; moreover, peripheral TPH inhibitors fail to enter the murine enteric nervous system (ENS) or central nervous systems and thus do not affect constitutive gastrointestinal motility. DESIGN: Two peripheral TPH inhibitors, LP-920540 and telotristat etiprate (LX1032; LX1606) were given orally to mice. Effects were measured on 5-HT levels in the gut, blood and brain, 5-HT immunoreactivity in the ENS, gastrointestinal motility and severity of trinitrobenzene sulfonic acid (TNBS)-induced colitis. Quantitation of clinical scores, histological damage and intestinal expression of inflammation-associated cytokines and chemokines with focused microarrays and real-time reverse transcriptase PCR were employed to evaluate the severity of intestinal inflammation. RESULTS: LP-920540 and LX1032 reduced 5-HT significantly in the gut and blood but not in the brain. Neither LP-920540 nor LX1032 decreased 5-HT immunoreactive neurons or fibres in the myenteric plexus and neither altered total gastrointestinal transit time, colonic motility or gastric emptying in mice. In contrast, oral LP-920540 and LX1032 reduced the severity of TNBS-induced colitis; the expression of 24% of 84 genes encoding inflammation-related cytokines and chemokines was lowered at least fourfold and the reduced expression of 17% was statistically significant. CONCLUSIONS: Observations suggest that that peripheral TPH inhibitors uncouple the positive linkage of enterochromaffin cell-derived 5-HT to intestinal inflammation. Because peripheral TPH inhibitors evidently do not enter the murine ENS, they lack deleterious effects on constitutive intestinal motility in mice.
Asunto(s)
Colitis/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Expresión Génica/efectos de los fármacos , Mucosa Intestinal/metabolismo , Neuronas/metabolismo , Serotonina/biosíntesis , Animales , Encéfalo/metabolismo , Colitis/inducido químicamente , Colitis/patología , Citocinas/genética , Motilidad Gastrointestinal/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Plexo Mientérico/metabolismo , Fenilalanina/análogos & derivados , Fenilalanina/farmacología , Pirimidinas/farmacología , Serotonina/sangre , Índice de Severidad de la Enfermedad , Ácido Trinitrobencenosulfónico , Triptófano Hidroxilasa/antagonistas & inhibidoresRESUMEN
Autism spectrum disorders (ASDs) are recognized as central neurodevelopmental disorders diagnosed by impairments in social interactions, communication and repetitive behaviours. The recognition of ASD as a central nervous system (CNS)-mediated neurobehavioural disorder has led most of the research in ASD to be focused on the CNS. However, gastrointestinal function is also likely to be affected owing to the neural mechanistic nature of ASD and the nervous system in the gastrointestinal tract (enteric nervous system). Thus, it is unsurprising that gastrointestinal disorders, particularly constipation, diarrhoea and abdominal pain, are highly comorbid in individuals with ASD. Gastrointestinal problems have also been repeatedly associated with increased severity of the core symptoms diagnostic of ASD and other centrally mediated comorbid conditions, including psychiatric issues, irritability, rigid-compulsive behaviours and aggression. Despite the high prevalence of gastrointestinal dysfunction in ASD and its associated behavioural comorbidities, the specific links between these two conditions have not been clearly delineated, and current data linking ASD to gastrointestinal dysfunction have not been extensively reviewed. This Review outlines the established and emerging clinical and preclinical evidence that emphasizes the gut as a novel mechanistic and potential therapeutic target for individuals with ASD.
Asunto(s)
Trastorno del Espectro Autista , Humanos , Trastorno del Espectro Autista/epidemiología , Relevancia Clínica , Dolor Abdominal/epidemiología , Dolor Abdominal/etiología , Estreñimiento/epidemiología , Estreñimiento/etiología , Tracto GastrointestinalRESUMEN
Introduction: Critical phases of neurodevelopment and gut microbiota diversification occur in early life and both processes are impacted by genetic and environmental factors. Recent studies have shown the presence of gut microbiota alterations in neurodevelopmental disorders. Here we performed a systematic review of alterations of the intestinal microbiota composition and function in pediatric and adult patients affected by autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and Rett syndrome (RETT). Methods: We searched selected keywords in the online databases of PubMed, Cochrane, and OVID (January 1980 to December 2021) with secondary review of references of eligible articles. Two reviewers independently performed critical appraisals on the included articles using the Critical Appraisal Skills Program for each study design. Results: Our systematic review identified 18, 7, and 3 original articles describing intestinal microbiota profiles in ASD, ADHD, and RETT, respectively. Decreased Firmicutes and increased Bacteroidetes were observed in the gut microbiota of individuals affected by ASD and ADHD. Proinflammatory cytokines, short-chain fatty acids and neurotransmitter levels were altered in ASD and RETT. Constipation and visceral pain were related to changes in the gut microbiota in patients affected by ASD and RETT. Hyperactivity and impulsivity were negatively correlated with Faecalibacterium (phylum Firmicutes) and positively correlated with Bacteroides sp. (phylum Bacteroidetes) in ADHD subjects. Five studies explored microbiota-or diet-targeted interventions in ASD and ADHD. Probiotic treatments with Lactobacillus sp. and fecal microbiota transplantation from healthy donors reduced constipation and ameliorated ASD symptoms in affected children. Perinatal administration of Lactobacillus sp. prevented the onset of Asperger and ADHD symptoms in adolescence. Micronutrient supplementation improved disease symptomatology in ADHD without causing significant changes in microbiota communities' composition. Discussion: Several discrepancies were found among the included studies, primarily due to sample size, variations in dietary practices, and a high prevalence of functional gastrointestinal symptoms. Further studies employing longitudinal study designs, larger sample sizes and multi-omics technologies are warranted to identify the functional contribution of the intestinal microbiota in developmental trajectories of the human brain and neurobehavior. Systematic review registration: https://clinicaltrials.gov/, CRD42020158734.