Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 154(3): 569-82, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23911322

RESUMEN

Heart failure (HF) is driven by the interplay between regulatory transcription factors and dynamic alterations in chromatin structure. Pathologic gene transactivation in HF is associated with recruitment of histone acetyl-transferases and local chromatin hyperacetylation. We therefore assessed the role of acetyl-lysine reader proteins, or bromodomains, in HF. Using a chemical genetic approach, we establish a central role for BET family bromodomain proteins in gene control during HF pathogenesis. BET inhibition potently suppresses cardiomyocyte hypertrophy in vitro and pathologic cardiac remodeling in vivo. Integrative transcriptional and epigenomic analyses reveal that BET proteins function mechanistically as pause-release factors critical to expression of genes that are central to HF pathogenesis and relevant to the pathobiology of failing human hearts. This study implicates epigenetic readers as essential effectors of transcriptional pause release during HF pathogenesis and identifies BET coactivator proteins as therapeutic targets in the heart.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cromatina , Modelos Animales de Enfermedad , Epigénesis Genética , Corazón , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Estructura Terciaria de Proteína , Ratas , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/química , Transcriptoma
2.
Nature ; 608(7921): 174-180, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35732739

RESUMEN

Heart failure encompasses a heterogeneous set of clinical features that converge on impaired cardiac contractile function1,2 and presents a growing public health concern. Previous work has highlighted changes in both transcription and protein expression in failing hearts3,4, but may overlook molecular changes in less prevalent cell types. Here we identify extensive molecular alterations in failing hearts at single-cell resolution by performing single-nucleus RNA sequencing of nearly 600,000 nuclei in left ventricle samples from 11 hearts with dilated cardiomyopathy and 15 hearts with hypertrophic cardiomyopathy as well as 16 non-failing hearts. The transcriptional profiles of dilated or hypertrophic cardiomyopathy hearts broadly converged at the tissue and cell-type level. Further, a subset of hearts from patients with cardiomyopathy harbour a unique population of activated fibroblasts that is almost entirely absent from non-failing samples. We performed a CRISPR-knockout screen in primary human cardiac fibroblasts to evaluate this fibrotic cell state transition; knockout of genes associated with fibroblast transition resulted in a reduction of myofibroblast cell-state transition upon TGFß1 stimulation for a subset of genes. Our results provide insights into the transcriptional diversity of the human heart in health and disease as well as new potential therapeutic targets and biomarkers for heart failure.


Asunto(s)
Cardiomiopatía Dilatada , Cardiomiopatía Hipertrófica , Núcleo Celular , Perfilación de la Expresión Génica , Insuficiencia Cardíaca , Análisis de la Célula Individual , Sistemas CRISPR-Cas , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/patología , Estudios de Casos y Controles , Núcleo Celular/genética , Células Cultivadas , Técnicas de Inactivación de Genes , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Humanos , Miocardio/metabolismo , Miocardio/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , RNA-Seq , Transcripción Genética , Factor de Crecimiento Transformador beta1
4.
Nature ; 573(7774): 430-433, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31511695

RESUMEN

Fibrosis is observed in nearly every form of myocardial disease1. Upon injury, cardiac fibroblasts in the heart begin to remodel the myocardium by depositing excess extracellular matrix, resulting in increased stiffness and reduced compliance of the tissue. Excessive cardiac fibrosis is an important factor in the progression of various forms of cardiac disease and heart failure2. However, clinical interventions and therapies that target fibrosis remain limited3. Here we demonstrate the efficacy of redirected T cell immunotherapy to specifically target pathological cardiac fibrosis in mice. We find that cardiac fibroblasts that express a xenogeneic antigen can be effectively targeted and ablated by adoptive transfer of antigen-specific CD8+ T cells. Through expression analysis of the gene signatures of cardiac fibroblasts obtained from healthy and diseased human hearts, we identify an endogenous target of cardiac fibroblasts-fibroblast activation protein. Adoptive transfer of T cells that express a chimeric antigen receptor against fibroblast activation protein results in a significant reduction in cardiac fibrosis and restoration of function after injury in mice. These results provide proof-of-principle for the development of immunotherapeutic drugs for the treatment of cardiac disease.


Asunto(s)
Linfocitos T CD8-positivos , Fibrosis Endomiocárdica/terapia , Inmunoterapia Adoptiva , Animales , Antígenos de Superficie/inmunología , Linfocitos T CD8-positivos/inmunología , Fibrosis Endomiocárdica/inmunología , Fibroblastos/inmunología , Humanos , Masculino , Ratones , Ovalbúmina/inmunología , Cicatrización de Heridas
5.
Nucleic Acids Res ; 51(20): 10829-10845, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37843128

RESUMEN

DNA damage causes genomic instability underlying many diseases, with traditional analytical approaches providing minimal insight into the spectrum of DNA lesions in vivo. Here we used untargeted chromatography-coupled tandem mass spectrometry-based adductomics (LC-MS/MS) to begin to define the landscape of DNA modifications in rat and human tissues. A basis set of 114 putative DNA adducts was identified in heart, liver, brain, and kidney in 1-26-month-old rats and 111 in human heart and brain by 'stepped MRM' LC-MS/MS. Subsequent targeted analysis of these species revealed species-, tissue-, age- and sex-biases. Structural characterization of 10 selected adductomic signals as known DNA modifications validated the method and established confidence in the DNA origins of the signals. Along with strong tissue biases, we observed significant age-dependence for 36 adducts, including N2-CMdG, 5-HMdC and 8-Oxo-dG in rats and 1,N6-ϵdA in human heart, as well as sex biases for 67 adducts in rat tissues. These results demonstrate the potential of adductomics for discovering the true spectrum of disease-driving DNA adducts. Our dataset of 114 putative adducts serves as a resource for characterizing dozens of new forms of DNA damage, defining mechanisms of their formation and repair, and developing them as biomarkers of aging and disease.


Asunto(s)
Aductos de ADN , ADN , Animales , Femenino , Humanos , Masculino , Ratas , Cromatografía Liquida/métodos , ADN/química , Aductos de ADN/genética , Roedores , Espectrometría de Masas en Tándem/métodos
6.
Circulation ; 147(1): 66-82, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36317534

RESUMEN

BACKGROUND: Cardiac hypertrophy increases demands on protein folding, which causes an accumulation of misfolded proteins in the endoplasmic reticulum (ER). These misfolded proteins can be removed by the adaptive retrotranslocation, polyubiquitylation, and a proteasome-mediated degradation process, ER-associated degradation (ERAD), which, as a biological process and rate, has not been studied in vivo. To investigate a role for ERAD in a pathophysiological model, we examined the function of the functional initiator of ERAD, valosin-containing protein-interacting membrane protein (VIMP), positing that VIMP would be adaptive in pathological cardiac hypertrophy in mice. METHODS: We developed a new method involving cardiac myocyte-specific adeno-associated virus serovar 9-mediated expression of the canonical ERAD substrate, TCRα, to measure the rate of ERAD, ie, ERAD flux, in the heart in vivo. Adeno-associated virus serovar 9 was also used to either knock down or overexpress VIMP in the heart. Then mice were subjected to transverse aortic constriction to induce pressure overload-induced cardiac hypertrophy. RESULTS: ERAD flux was slowed in both human heart failure and mice after transverse aortic constriction. Surprisingly, although VIMP adaptively contributes to ERAD in model cell lines, in the heart, VIMP knockdown increased ERAD and ameliorated transverse aortic constriction-induced cardiac hypertrophy. Coordinately, VIMP overexpression exacerbated cardiac hypertrophy, which was dependent on VIMP engaging in ERAD. Mechanistically, we found that the cytosolic protein kinase SGK1 (serum/glucocorticoid regulated kinase 1) is a major driver of pathological cardiac hypertrophy in mice subjected to transverse aortic constriction, and that VIMP knockdown decreased the levels of SGK1, which subsequently decreased cardiac pathology. We went on to show that although it is not an ER protein, and resides outside of the ER, SGK1 is degraded by ERAD in a noncanonical process we call ERAD-Out. Despite never having been in the ER, SGK1 is recognized as an ERAD substrate by the ERAD component DERLIN1, and uniquely in cardiac myocytes, VIMP displaces DERLIN1 from initiating ERAD, which decreased SGK1 degradation and promoted cardiac hypertrophy. CONCLUSIONS: ERAD-Out is a new preferentially favored noncanonical form of ERAD that mediates the degradation of SGK1 in cardiac myocytes, and in so doing is therefore an important determinant of how the heart responds to pathological stimuli, such as pressure overload.


Asunto(s)
Cardiomegalia , Degradación Asociada con el Retículo Endoplásmico , Animales , Humanos , Ratones , Cardiomegalia/metabolismo , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Miocitos Cardíacos/metabolismo , Respuesta de Proteína Desplegada/fisiología
7.
Circulation ; 147(15): 1147-1161, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36856044

RESUMEN

BACKGROUND: The human heart primarily metabolizes fatty acids, and this decreases as alternative fuel use rises in heart failure with reduced ejection fraction (HFrEF). Patients with severe obesity and diabetes are thought to have increased myocardial fatty acid metabolism, but whether this is found in those who also have heart failure with preserved ejection fraction (HFpEF) is unknown. METHODS: Plasma and endomyocardial biopsies were obtained from HFpEF (n=38), HFrEF (n=30), and nonfailing donor controls (n=20). Quantitative targeted metabolomics measured organic acids, amino acids, and acylcarnitines in myocardium (72 metabolites) and plasma (69 metabolites). The results were integrated with reported RNA sequencing data. Metabolomics were analyzed using agnostic clustering tools, Kruskal-Wallis test with Dunn test, and machine learning. RESULTS: Agnostic clustering of myocardial but not plasma metabolites separated disease groups. Despite more obesity and diabetes in HFpEF versus HFrEF (body mass index, 39.8 kg/m2 versus 26.1 kg/m2; diabetes, 70% versus 30%; both P<0.0001), medium- and long-chain acylcarnitines (mostly metabolites of fatty acid oxidation) were markedly lower in myocardium from both heart failure groups versus control. In contrast, plasma levels were no different or higher than control. Gene expression linked to fatty acid metabolism was generally lower in HFpEF versus control. Myocardial pyruvate was higher in HFpEF whereas the tricarboxylic acid cycle intermediates succinate and fumarate were lower, as were several genes controlling glucose metabolism. Non-branched-chain and branched-chain amino acids (BCAA) were highest in HFpEF myocardium, yet downstream BCAA metabolites and genes controlling BCAA metabolism were lower. Ketone levels were higher in myocardium and plasma of patients with HFrEF but not HFpEF. HFpEF metabolomic-derived subgroups were differentiated by only a few differences in BCAA metabolites. CONCLUSIONS: Despite marked obesity and diabetes, HFpEF myocardium exhibited lower fatty acid metabolites compared with HFrEF. Ketones and metabolites of the tricarboxylic acid cycle and BCAA were also lower in HFpEF, suggesting insufficient use of alternative fuels. These differences were not detectable in plasma and challenge conventional views of myocardial fuel use in HFpEF with marked diabetes and obesity and suggest substantial fuel inflexibility in this syndrome.


Asunto(s)
Diabetes Mellitus , Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/metabolismo , Volumen Sistólico , Miocardio/metabolismo , Diabetes Mellitus/patología , Obesidad/patología , Ácidos Grasos
8.
Circulation ; 147(25): 1919-1932, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37194598

RESUMEN

BACKGROUND: Right ventricular (RV) contractile dysfunction commonly occurs and worsens outcomes in patients with heart failure with reduced ejection fraction and pulmonary hypertension (HFrEF-PH). However, such dysfunction often goes undetected by standard clinical RV indices, raising concerns that they may not reflect aspects of underlying myocyte dysfunction. We thus sought to characterize RV myocyte contractile depression in HFrEF-PH, identify those components reflected by clinical RV indices, and uncover underlying biophysical mechanisms. METHODS: Resting, calcium-, and load-dependent mechanics were prospectively studied in permeabilized RV cardiomyocytes isolated from explanted hearts from 23 patients with HFrEF-PH undergoing cardiac transplantation and 9 organ donor controls. RESULTS: Unsupervised machine learning using myocyte mechanical data with the highest variance yielded 2 HFrEF-PH subgroups that in turn mapped to patients with decompensated or compensated clinical RV function. This correspondence was driven by reduced calcium-activated isometric tension in decompensated clinical RV function, whereas surprisingly, many other major myocyte contractile measures including peak power and myocyte active stiffness were similarly depressed in both groups. Similar results were obtained when subgroups were first defined by clinical indices, and then myocyte mechanical properties in each group compared. To test the role of thick filament defects, myofibrillar structure was assessed by x-ray diffraction of muscle fibers. This revealed more myosin heads associated with the thick filament backbone in decompensated clinical RV function, but not compensated clinical RV function, as compared with controls. This corresponded to reduced myosin ATP turnover in decompensated clinical RV function myocytes, indicating less myosin in a crossbridge-ready disordered-relaxed (DRX) state. Altering DRX proportion (%DRX) affected peak calcium-activated tension in the patient groups differently, depending on their basal %DRX, highlighting potential roles for precision-guided therapeutics. Last, increasing myocyte preload (sarcomere length) increased %DRX 1.5-fold in controls but only 1.2-fold in both HFrEF-PH groups, revealing a novel mechanism for reduced myocyte active stiffness and by extension Frank-Starling reserve in human heart failure. CONCLUSIONS: Although there are many RV myocyte contractile deficits in HFrEF-PH, commonly used clinical indices only detect reduced isometric calcium-stimulated force, which is related to deficits in basal and recruitable %DRX myosin. Our results support use of therapies to increase %DRX and enhance length-dependent recruitment of DRX myosin heads in such patients.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Disfunción Ventricular Derecha , Humanos , Sarcómeros , Calcio , Depresión , Volumen Sistólico , Miocitos Cardíacos , Función Ventricular Derecha/fisiología
9.
Basic Res Cardiol ; 119(2): 277-289, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38349539

RESUMEN

Recognizing that cells "feel" and respond to their mechanical environment, recent studies demonstrate that many cells exhibit a phenomenon of "mechanical memory" in which features induced by prior mechanical cues persist after the mechanical stimulus has ceased. While there is a general recognition that different cell types exhibit different responses to changes in extracellular matrix stiffening, the phenomenon of mechanical memory within myocardial cell types has received little attention to date. To probe the dynamics of mechanical memory in cardiac fibroblasts (CFs) and cardiomyocytes derived from human induced pluripotent stem cells (iPSC-CMs), we employed a magnetorheological elastomer (MRE) cell culture substrate with tunable and reversible stiffness spanning the range from normal to diseased myocardium. In CFs, using increased cell area and increases in α-smooth muscle actin as markers of cellular responses to matrix stiffening, we found that induction of mechanical memory required seven days of stiff priming. Both induction and maintenance of persistent CF activation were blocked with the F-actin inhibitor cytochalasin D, while inhibitors of microtubule detyrosination had no impact on CFs. In iPSC-CMs, mechanical memory was invoked after only 24 h of stiff priming. Moreover, mechanical memory induction and maintenance were microtubule-dependent in CMs with no dependence on F-actin. Overall, these results identify the distinct temporal dynamics of mechanical memory in CFs and iPSC-CMs with different cytoskeletal mediators responsible for inducing and maintaining the stiffness-activated phenotype. Due to its flexibility, this model is broadly applicable to future studies interrogating mechanotransduction and mechanical memory in the heart and might inform strategies for attenuating the impact of load-induced pathology and excess myocardial stiffness.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Actinas/metabolismo , Mecanotransducción Celular , Diferenciación Celular/fisiología , Fibroblastos/metabolismo
10.
J Card Fail ; 30(2): 391-398, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37806488

RESUMEN

There is waning interest among cardiology trainees in pursuing an Advanced Heart Failure/Transplant Cardiology (AHFTC) fellowship as evidenced by fewer applicants in the National Resident Matching Program match to this specialty. This trend has generated considerable attention across the heart failure community. In response, the Heart Failure Society of America convened the AHFTC Fellowship Task Force with a charge to develop strategies to increase the value proposition of an AHFTC fellowship. Subsequently, the HFSA sponsored the AHFTC Fellowship Consensus Conference April 26-27, 2023. Before the conference, interviews of 44 expert stakeholders diverse across geography, site of practice (traditional academic medical center or other centers), specialty/area of expertise, sex, and stage of career were conducted virtually. Based on these interviews, potential solutions to address the declining interest in AHFTC fellowship were categorized into five themes: (1) alternative training pathways, (2) regulatory and compensation, (3) educational improvements, (4) exposure and marketing for pipeline development, and (5) quality of life and mental health. These themes provided structure to the deliberations of the AHFTC Fellowship Consensus Conference. The recommendations from the Consensus Conference were subsequently presented to the HFSA Board of Directors to inform strategic plans and interventions. The HFSA Board of Directors later reviewed and approved submission of this document. The purpose of this communication is to provide the HF community with an update summarizing the processes used and concepts that emerged from the work of the HFSA AHFTC Fellowship Task Force and Consensus Conference.


Asunto(s)
Cardiología , Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/cirugía , Becas , Calidad de Vida , Consenso
11.
Eur Heart J ; 44(13): 1170-1185, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36734059

RESUMEN

AIMS: Genetic hypertrophic cardiomyopathy (HCM) is caused by mutations in sarcomere protein-encoding genes (i.e. genotype-positive HCM). In an increasing number of patients, HCM occurs in the absence of a mutation (i.e. genotype-negative HCM). Mitochondrial dysfunction is thought to be a key driver of pathological remodelling in HCM. Reports of mitochondrial respiratory function and specific disease-modifying treatment options in patients with HCM are scarce. METHODS AND RESULTS: Respirometry was performed on septal myectomy tissue from patients with HCM (n = 59) to evaluate oxidative phosphorylation and fatty acid oxidation. Mitochondrial dysfunction was most notably reflected by impaired NADH-linked respiration. In genotype-negative patients, but not genotype-positive patients, NADH-linked respiration was markedly depressed in patients with an indexed septal thickness ≥10 compared with <10. Mitochondrial dysfunction was not explained by reduced abundance or fragmentation of mitochondria, as evaluated by transmission electron microscopy. Rather, improper organization of mitochondria relative to myofibrils (expressed as a percentage of disorganized mitochondria) was strongly associated with mitochondrial dysfunction. Pre-incubation with the cardiolipin-stabilizing drug elamipretide and raising mitochondrial NAD+ levels both boosted NADH-linked respiration. CONCLUSION: Mitochondrial dysfunction is explained by cardiomyocyte architecture disruption and is linked to septal hypertrophy in genotype-negative HCM. Despite severe myocardial remodelling mitochondria were responsive to treatments aimed at restoring respiratory function, eliciting the mitochondria as a drug target to prevent and ameliorate cardiac disease in HCM. Mitochondria-targeting therapy may particularly benefit genotype-negative patients with HCM, given the tight link between mitochondrial impairment and septal thickening in this subpopulation.


Asunto(s)
Cardiomiopatía Hipertrófica , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/patología , NAD/genética , Cardiomiopatía Hipertrófica/genética , Mutación , Mitocondrias Cardíacas/patología , Respiración
12.
Circulation ; 145(21): 1563-1577, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35405081

RESUMEN

BACKGROUND: Cardiac allograft vasculopathy (CAV) is a leading cause of morbidity and mortality for heart transplant recipients. Although clinical risk factors for CAV have been established, no personalized prognostic test exists to confidently identify patients at high versus low risk of developing aggressive CAV. This investigation aimed to leverage computational methods for analyzing digital pathology images from routine endomyocardial biopsies (EMBs) to develop a precision medicine tool for predicting CAV years before overt clinical presentation. METHODS: Clinical data from 1 year after transplant were collected on 302 transplant recipients from the University of Pennsylvania, including 53 patients with early-onset CAV and 249 no early-onset CAV controls. These data were used to generate a clinical model (Clinical Risk Factor Future Cardiac Allograft Vasculopathy Prediction Model [ClinCAV-Pr]) for predicting future CAV development. From this cohort, 183 archived EMBs were collected for CD31 and modified trichrome staining and then digitally scanned. These included 1-year posttransplant EMBs from 50 patients with early-onset CAV and 82 patients with no early-onset CAV, as well as 51 EMBs from disease control patients obtained at the time of definitive coronary angiography confirming CAV. Using biologically inspired, handcrafted features extracted from digitized EMBs, quantitative histological models for differentiating no early-onset CAV from disease controls (Histological Cardiac Allograft Vasculopathy Diagnostic Model [HistoCAV-Dx]) and for predicting future CAV from 1-year posttransplant EMBs were developed (Histological Future Cardiac Allograft Vasculopathy Prediction Model [HistoCAV-Pr]). The performance of histological and clinical models for predicting future CAV (ie, HistoCAV-Pr and ClinCAV-Pr, respectively) were compared in a held-out validation set before being combined to assess the added predictive value of an integrated predictive model (Integrated Histological/Clinical Risk Factor Future Cardiac Allograft Vasculopathy Prediction Model [iCAV-Pr]). RESULTS: ClinCAV-Pr achieved modest performance on the independent test set, with an area under the receiver operating curve (AUROC) of 0.70. The HistoCAV-Dx model for diagnosing CAV achieved excellent discrimination, with an AUROC of 0.91, whereas the HistoCAV-Pr model for predicting CAV achieved good performance with an AUROC of 0.80. The integrated iCAV-Pr model achieved excellent predictive performance, with an AUROC of 0.93 on the held-out test set. CONCLUSIONS: Prediction of future CAV development is greatly improved by incorporation of computationally extracted histological features. These results suggest morphological details contained within regularly obtained biopsy tissue have the potential to enhance precision and personalization of treatment plans for patients after heart transplant.


Asunto(s)
Rechazo de Injerto , Trasplante de Corazón , Aloinjertos , Biopsia , Angiografía Coronaria/métodos , Rechazo de Injerto/diagnóstico , Trasplante de Corazón/efectos adversos , Trasplante de Corazón/métodos , Humanos
13.
Circulation ; 146(11): 808-818, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35603596

RESUMEN

BACKGROUND: Sodium-glucose cotransporter-2 inhibitors are foundational therapy in patients with heart failure with reduced ejection fraction (HFrEF), but underlying mechanisms of benefit are not well defined. We sought to investigate the relationships between sodium-glucose cotransporter-2 inhibitor treatment, changes in metabolic pathways, and outcomes using targeted metabolomics. METHODS: DEFINE-HF (Dapagliflozin Effects on Biomarkers, Symptoms and Functional Status in Patients With HF With Reduced Ejection Fraction) was a placebo-controlled trial of dapagliflozin in HFrEF. We performed targeted mass spectrometry profiling of 63 metabolites (45 acylcarnitines [markers of fatty acid oxidation], 15 amino acids, and 3 conventional metabolites) in plasma samples at randomization and 12 weeks. Using mixed models, we identified principal components analysis-defined metabolite clusters that changed differentially with treatment and examined the relationship between change in metabolite clusters and change in Kansas City Cardiomyopathy Questionnaire scores and NT-proBNP (N-terminal probrain natriuretic peptide). Models were adjusted for relevant clinical covariates and nominal P<0.05 with false discovery rate-adjusted P<0.10 was used to determine statistical significance. RESULTS: Among the 234 DEFINE-HF participants with targeted metabolomic data, the mean age was 62.0±11.1 years, 25% were women, 38% were Black, and mean ejection fraction was 27±8%. Dapagliflozin increased ketone-related and short-chain acylcarnitine as well as medium-chain acylcarnitine principal components analysis-defined metabolite clusters compared with placebo (nominal P=0.01, false discovery rate-adjusted P=0.08 for both clusters). However, ketosis (ß-hydroxybutyrate levels >500 µmol/L) was achieved infrequently (3 [2.5%] in dapagliflozin arm versus 1 [0.9%] in placebo arm) and supraphysiologic levels were not observed. Increases in long-chain acylcarnitine, long-chain dicarboxylacylcarnitine, and aromatic amino acid metabolite clusters were associated with decreases in Kansas City Cardiomyopathy Questionnaire scores (ie, worse quality of life) and increases in NT-proBNP levels, without interaction by treatment group. CONCLUSIONS: In this study of targeted metabolomics in a placebo-controlled trial of sodium-glucose cotransporter-2 inhibitors in HFrEF, we observed effects of dapagliflozin on key metabolic pathways, supporting a role for altered ketone and fatty acid biology with sodium-glucose cotransporter-2 inhibitors in patients with HFrEF. Only physiologic levels of ketosis were observed. In addition, we identified several metabolic biomarkers associated with adverse HFrEF outcomes. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT02653482.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Cetosis , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Disfunción Ventricular Izquierda , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Compuestos de Bencidrilo/efectos adversos , Biomarcadores , Cardiomiopatías/complicaciones , Ácidos Grasos , Glucósidos , Cetonas/uso terapéutico , Calidad de Vida , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Volumen Sistólico/fisiología , Disfunción Ventricular Izquierda/complicaciones
14.
Am J Transplant ; 23(6): 727-735, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36870390

RESUMEN

In heart transplantation, the use of biomarkers to detect the risk of rejection has been evolving. In this setting, it is becoming less clear as to what is the most reliable test or combination of tests to detect rejection and assess the state of the alloimmune response. Therefore, a virtual expert panel was organized in heart and kidney transplantation to evaluate emerging diagnostics and how they may be best utilized to monitor and manage transplant patients. This manuscript covers the heart content of the conference and is a work product of the American Society of Transplantation's Thoracic and Critical Care Community of Practice. This paper reviews currently available and emerging diagnostic assays and defines the unmet needs for biomarkers in heart transplantation. Highlights of the in-depth discussions among conference participants that led to development of consensus statements are included. This conference should serve as a platform to further build consensus within the heart transplant community regarding the optimal framework to implement biomarkers into management protocols and to improve biomarker development, validation and clinical utility. Ultimately, these biomarkers and novel diagnostics should improve outcomes and optimize quality of life for our transplant patients.


Asunto(s)
Trasplante de Corazón , Trasplante de Riñón , Humanos , Calidad de Vida , Trasplante de Corazón/efectos adversos , Biomarcadores , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/etiología
15.
Am J Physiol Heart Circ Physiol ; 325(4): H814-H821, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37566108

RESUMEN

Osteogenesis imperfecta (OI) is an extracellular matrix disorder characterized by defects in collagen-1 transport or synthesis, resulting in bone abnormalities. Although reduced collagen in OI hearts has been associated with reduced myocardial stiffness and left ventricular remodeling, its impact on cardiomyocyte (CM) function has not been studied. Here, we explore the tissue-level and CM-level properties of a heart from a deceased organ donor with OI type I. Proteomics and histology confirmed strikingly low expression of collagen 1. Trabecular stretch confirmed low stiffness on the tissue level. However, CMs retained normal viscoelastic properties as revealed by nanoindentation. Interestingly, OI CMs were hypercontractile relative to nonfailing controls after 24 h of culture. In response to 48 h of culture on surfaces with physiological (10 kPa) and pathological (50 kPa) stiffness, OI CMs demonstrated a greater reduction in contractility than nonfailing CMs, suggesting that OI CMs may have an impaired stress response. Levels of detyrosinated α-tubulin, known to be responsive to extracellular stiffness, were reduced in OI CMs. Together these data confirm multiple CM-level adaptations to low stiffness that extend our understanding of OI in the heart and how CMs respond to extracellular stiffness.NEW & NOTEWORTHY In a rare donation of a heart from an individual with osteogenesis imperfecta (OI), we explored cardiomyocyte (CM) adaptations to low stiffness. This represents the first assessment of cardiomyocyte mechanics in OI. The data reveal the hypercontractility of OI CMs with rapid rundown when exposed to acute stiffness challenges, extending our understanding of OI. These data demonstrate that the impact of OI on myocardial mechanics includes cardiomyocyte adaptations beyond known direct effects on the extracellular matrix.


Asunto(s)
Osteogénesis Imperfecta , Humanos , Adulto , Osteogénesis Imperfecta/metabolismo , Osteogénesis Imperfecta/patología , Miocitos Cardíacos/metabolismo , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Osteogénesis
16.
J Natl Compr Canc Netw ; 21(10): 1039-1049.e10, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37856199

RESUMEN

BACKGROUND: Although VEGFR tyrosine kinase inhibitors (TKIs) are a preferred systemic treatment approach for patients with advanced renal cell carcinoma (RCC) and thyroid carcinoma (TC), treatment-related cardiovascular (CV) toxicity is an important contributor to morbidity. However, the clinical risk assessment and impact of CV toxicities, including early significant hypertension, among real-world advanced cancer populations receiving VEGFR TKI therapies remain understudied. METHODS: In a multicenter, retrospective cohort study across 3 large and diverse US health systems, we characterized baseline hypertension and CV comorbidity in patients with RCC and those with TC who are newly initiating VEGFR TKI therapy. We also evaluated baseline patient-, treatment-, and disease-related factors associated with the risk for treatment-related early hypertension (within 6 weeks of TKI initiation) and major adverse CV events (MACE), accounting for the competing risk of death in an advanced cancer population, after VEGFR TKI initiation. RESULTS: Between 2008 and 2020, 987 patients (80.3% with RCC, 19.7% with TC) initiated VEGFR TKI therapy. The baseline prevalence of hypertension was high (61.5% and 53.6% in patients with RCC and TC, respectively). Adverse CV events, including heart failure and cerebrovascular accident, were common (occurring in 14.9% of patients) and frequently occurred early (46.3% occurred within 1 year of VEGFR TKI initiation). Baseline hypertension and Black race were the primary clinical factors associated with increased acute hypertensive risk within 6 weeks of VEGFR TKI initiation. However, early significant "on-treatment" hypertension was not associated with MACE. CONCLUSIONS: These multicenter, real-world findings indicate that hypertensive and CV morbidities are highly prevalent among patients initiating VEGFR TKI therapies, and baseline hypertension and Black race represent the primary clinical factors associated with VEGFR TKI-related early significant hypertension. However, early on-treatment hypertension was not associated with MACE, and cancer-specific CV risk algorithms may be warranted for patients initiating VEGFR TKIs.


Asunto(s)
Carcinoma de Células Renales , Hipertensión , Neoplasias Renales , Neoplasias de la Tiroides , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/epidemiología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/epidemiología , Presión Sanguínea , Estudios Retrospectivos , Inhibidores de Proteínas Quinasas/efectos adversos , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/epidemiología , Hipertensión/inducido químicamente , Hipertensión/epidemiología , Hipertensión/tratamiento farmacológico
17.
Arterioscler Thromb Vasc Biol ; 42(11): 1355-1374, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36172868

RESUMEN

BACKGROUND: Mural cells in ascending aortic aneurysms undergo phenotypic changes that promote extracellular matrix destruction and structural weakening. To explore this biology, we analyzed the transcriptional features of thoracic aortic tissue. METHODS: Single-nuclear RNA sequencing was performed on 13 samples from human donors, 6 with thoracic aortic aneurysm, and 7 without aneurysm. Individual transcriptomes were then clustered based on transcriptional profiles. Clusters were used for between-disease differential gene expression analyses, subcluster analysis, and analyzed for intersection with genetic aortic trait data. RESULTS: We sequenced 71 689 nuclei from human thoracic aortas and identified 14 clusters, aligning with 11 cell types, predominantly vascular smooth muscle cells (VSMCs) consistent with aortic histology. With unbiased methodology, we found 7 vascular smooth muscle cell and 6 fibroblast subclusters. Differentially expressed genes analysis revealed a vascular smooth muscle cell group accounting for the majority of differential gene expression. Fibroblast populations in aneurysm exhibit distinct behavior with almost complete disappearance of quiescent fibroblasts. Differentially expressed genes were used to prioritize genes at aortic diameter and distensibility genome-wide association study loci highlighting the genes JUN, LTBP4 (latent transforming growth factor beta-binding protein 1), and IL34 (interleukin 34) in fibroblasts, ENTPD1, PDLIM5 (PDZ and LIM domain 5), ACTN4 (alpha-actinin-4), and GLRX in vascular smooth muscle cells, as well as LRP1 in macrophage populations. CONCLUSIONS: Using nuclear RNA sequencing, we describe the cellular diversity of healthy and aneurysmal human ascending aorta. Sporadic aortic aneurysm is characterized by differential gene expression within known cellular classes rather than by the appearance of novel cellular forms. Single-nuclear RNA sequencing of aortic tissue can be used to prioritize genes at aortic trait loci.


Asunto(s)
Aneurisma de la Aorta Torácica , Aneurisma de la Aorta , Humanos , Estudio de Asociación del Genoma Completo , Músculo Liso Vascular/metabolismo , Actinina/genética , ARN Nuclear/metabolismo , Aorta/patología , Miocitos del Músculo Liso/metabolismo , Aneurisma de la Aorta Torácica/patología , Aneurisma de la Aorta/metabolismo , Análisis de Secuencia de ARN , Factor de Crecimiento Transformador beta/metabolismo
18.
J Immunol ; 207(8): 2086-2095, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34551963

RESUMEN

CMV is a major infectious complication following solid organ transplantation. Reactivation of CMV leads to memory inflation, a process in which CD8 T cells expand over time. Memory inflation is associated with specific changes in T cell function, including increased oligoclonality, decreased cytokine production, and terminal differentiation. To address whether memory inflation during the first year after transplantation in human subjects alters T cell differentiation and function, we employed single-cell-matched TCRαß and targeted gene expression sequencing. Expanded T cell clones exhibited a terminally differentiated, immunosenescent, and polyfunctional phenotype whereas rare clones were less differentiated. Clonal expansion occurring between pre- and 3 mo posttransplant was accompanied by enhancement of polyfunctionality. In contrast, polyfunctionality and differentiation state were largely maintained between 3 and 12 mo posttransplant. Highly expanded clones had a higher degree of polyfunctionality than rare clones. Thus, CMV-responsive CD8 T cells differentiated during the pre- to posttransplant period then maintained their differentiation state and functional capacity despite posttransplant clonal expansion.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/fisiología , Trasplante de Corazón , Trasplante de Riñón , Adulto , Anciano , Antígenos Virales/inmunología , Diferenciación Celular , Proliferación Celular , Células Clonales , Femenino , Humanos , Memoria Inmunológica , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Análisis de la Célula Individual
19.
J Immunol ; 207(8): 2077-2085, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34551964

RESUMEN

CMV infection is a significant complication after solid organ transplantation. We used single cell TCR αß sequencing to determine how memory inflation impacts clonality and diversity of the CMV-responsive CD8 and CD4 T cell repertoire in the first year after transplantation in human subjects. We observed CD8 T cell inflation but no changes in clonal diversity, indicating homeostatic stability in clones. In contrast, the CD4 repertoire was diverse and stable over time, with no evidence of CMV-responsive CD4 T cell expansion. We identified shared CDR3 TCR motifs among patients but no public CMV-specific TCRs. Temporal changes in clonality in response to transplantation and in the absence of detectable viral reactivation suggest changes in the repertoire immediately after transplantation followed by an expansion with stable clonal competition that may mediate protection.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/fisiología , Rechazo de Injerto/inmunología , Trasplante de Corazón , Trasplante de Riñón , Adulto , Anciano , Antígenos Virales/inmunología , Proliferación Celular , Células Clonales , Femenino , Variación Genética , Humanos , Memoria Inmunológica , Masculino , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Trasplante Homólogo , Activación Viral/inmunología
20.
Mol Ther ; 30(5): 1966-1978, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34774754

RESUMEN

To advance a novel concept of debulking virus in the oral cavity, the primary site of viral replication, virus-trapping proteins CTB-ACE2 were expressed in chloroplasts and clinical-grade plant material was developed to meet FDA requirements. Chewing gum (2 g) containing plant cells expressed CTB-ACE2 up to 17.2 mg ACE2/g dry weight (11.7% leaf protein), have physical characteristics and taste/flavor like conventional gums, and no protein was lost during gum compression. CTB-ACE2 gum efficiently (>95%) inhibited entry of lentivirus spike or VSV-spike pseudovirus into Vero/CHO cells when quantified by luciferase or red fluorescence. Incubation of CTB-ACE2 microparticles reduced SARS-CoV-2 virus count in COVID-19 swab/saliva samples by >95% when evaluated by microbubbles (femtomolar concentration) or qPCR, demonstrating both virus trapping and blocking of cellular entry. COVID-19 saliva samples showed low or undetectable ACE2 activity when compared with healthy individuals (2,582 versus 50,126 ΔRFU; 27 versus 225 enzyme units), confirming greater susceptibility of infected patients for viral entry. CTB-ACE2 activity was completely inhibited by pre-incubation with SARS-CoV-2 receptor-binding domain, offering an explanation for reduced saliva ACE2 activity among COVID-19 patients. Chewing gum with virus-trapping proteins offers a general affordable strategy to protect patients from most oral virus re-infections through debulking or minimizing transmission to others.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Enzima Convertidora de Angiotensina 2/genética , Animales , Goma de Mascar , Cricetinae , Cricetulus , Procedimientos Quirúrgicos de Citorreducción , Humanos , Unión Proteica , SARS-CoV-2 , Saliva/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA