RESUMEN
BACKGROUND: Gastric cancer disproportionately impacts populations in resource-limited settings. Within a safety-net network, we assessed the utility of computed tomography (CT) as a single staging modality. METHODS: We utilized a clinical database of gastric cancer patients treated within the Los Angeles County safety-net hospital system from 2016 to 2023 in conjunction with retrospective imaging review by certified radiologists. We assessed agreement between clinical and pathological staging for patients who underwent curative gastrectomy using the Kappa coefficient. RESULTS: Of 107 patients with available CT imaging, 43.9% (n = 47) were staged with CT as a single modality. Most tumors displayed infiltrating (75%) or diffuse (28%) morphology, 41% displayed adequate gastric distention and regional lymphadenopathy was common (68%). Twenty-nine patients underwent curative gastrectomy. Overall agreement was minimal (κ = 0.29, 95% CI [0.071-0.51], p = 0.022), weak for T3/T4 tumors (κ = 0.50, 95% CI [0.17-0.82], p < 0.01), and weak for Hispanic/Latino patients (κ = 0.47, 95% CI [0.19-0.76], p < 0.01). CONCLUSIONS: There was minimal agreement between clinical and pathologic staging when assessing clinical stage by CT imaging alone, suggesting that CT is not adequate as a single modality staging tool. While every effort should be made to obtain multimodal staging, larger studies are warranted to improve CT imaging protocols for staging in resource-limited settings.
RESUMEN
Neutrinoless double beta decay (0νßß) is a yet unobserved nuclear process that would demonstrate Lepton number violation, a clear evidence of beyond standard model physics. The process two neutrino double beta decay (2νßß) is allowed by the standard model and has been measured in numerous experiments. In this Letter, we report a measurement of 2νßß decay half-life of ^{100}Mo to the ground state of ^{100}Ru of [7.07±0.02(stat)±0.11(syst)]×10^{18} yr by the CUPID-Mo experiment. With a relative precision of ±1.6% this is the most precise measurement to date of a 2νßß decay rate in ^{100}Mo. In addition, we constrain higher-order corrections to the spectral shape, which provides complementary nuclear structure information. We report a novel measurement of the shape factor ξ_{3,1}=0.45±0.03(stat)±0.05(syst) based on a constraint on the ratio of higher-order terms from theory, which can be reliably calculated. This is compared to theoretical predictions for different nuclear models. We also extract the first value for the effective axial vector coupling constant obtained from a spectral shape study of 2νßß decay.
RESUMEN
Benzidine undergoes N-acetylation and following CYP1A2-catalyzed N-hydroxylation undergoes O-acetylation catalyzed by N-acetyltransferase 1 (NAT1). Benzidine exposure is associated with urinary bladder cancer but the effect of NAT1 genetic polymorphism on individual risk remains unclear. We used Chinese hamster ovary (CHO) cells transfected with human CYP1A2 and NAT1*4 allele (reference) or NAT1*14B (variant) to investigate the effects of dose and NAT1 polymorphism on benzidine metabolism and genotoxicity. Rates of benzidine N-acetylation in vitro were higher in CHO cells transfected with NAT1*4 compared to NAT1*14B. CHO cells transfected with NAT1*14B exhibited greater N-acetylation rates in situ than cells transfected with NAT1*4 at low doses of benzidine expected with environmental exposures but not at higher doses. NAT1*14B exhibited over tenfold lower apparent KM which resulted in higher intrinsic clearance for benzidine N-acetylation compared to CHO cells transfected with NAT1*4. Benzidine-induced hypoxanthine phosphoribosyl transferase (HPRT) mutations were higher in CHO cells transfected with NAT1*14B than with NAT1*4 (p < 0.001). Benzidine caused concentration-dependent increase in γ-H2AX signal (indicative of DNA double-strand breaks) in CHO cells transfected with NAT1*4 or NAT1*14B. CHO cells transfected with NAT1*14B exhibited significantly higher level of DNA damage than with NAT1*4 (p < 0.0001). Benzidine-induced ROS did not differ significantly (p > 0.05) between CHO cells transfected with NAT1*4 or NAT1*14B except at 50 µM. Levels of benzidine-induced DNA damage and reactive oxygen species (ROS) showed strong dose-dependent correlation. Our findings support human studies associating NAT1*14B with increased incidence or severity of urinary bladder cancer in workers exposed to benzidine.
Asunto(s)
Arilamina N-Acetiltransferasa , Neoplasias de la Vejiga Urinaria , Cricetinae , Animales , Humanos , Citocromo P-450 CYP1A2/metabolismo , Cricetulus , Células CHO , Especies Reactivas de Oxígeno , Arilamina N-Acetiltransferasa/genética , Arilamina N-Acetiltransferasa/metabolismo , Daño del ADN , Polimorfismo Genético , Bencidinas/toxicidad , AcetilaciónRESUMEN
4,4'-Methylenebis(2-chloroaniline) or MOCA is an aromatic amine used primarily in polyurethane and rubber industry. MOCA has been linked to hepatomas in animal studies while limited epidemiologic studies reported the association of exposure to MOCA and urinary bladder and breast cancer. We investigated MOCA-induced genotoxicity and oxidative stress in DNA repair-deficient Chinese hamster ovary (CHO) cells stably transfected with human metabolizing enzymes CYP1A2 and N-acetyltransferase 2 (NAT2) variants as well as in rapid, intermediate, and slow NAT2 acetylator cryopreserved human hepatocytes. N-acetylation of MOCA was highest in UV5/1A2/NAT2*4 followed by UV5/1A2/NAT2*7B and UV5/1A2/NAT2*5B CHO cells. Human hepatocytes showed a NAT2 genotype-dependent response with highest N-acetylation in rapid acetylators followed by intermediate and slow acetylators. MOCA induced higher levels of mutagenesis and DNA damage in UV5/1A2/NAT2*7B compared to UV5/1A2/NAT2*4 and UV5/1A2/NAT2*5B cells (p < 0.0001). MOCA also induced higher levels of oxidative stress in UV5/1A2/NAT2*7B cells. MOCA caused concentration-dependent increase in DNA damage in cryopreserved human hepatocytes (linear trend p < 0.001) which was NAT2 genotype dependent i.e., highest in rapid acetylators, lower in intermediate acetylators, and lowest in slow acetylators (p < 0.0001). Our findings show that N-acetylation and genotoxicity of MOCA is NAT2 genotype dependent and suggest that individuals possessing NAT2*7B are at higher risk to MOCA-induced mutagenicity. DNA damage, and oxidative stress. They confirm significant differences in genotoxicity between the NAT2*5B and NAT2*7B alleles, both of which are associated with slow acetylator phenotype.
Asunto(s)
Arilamina N-Acetiltransferasa , Metilenobis (cloroanilina) , Cricetinae , Animales , Humanos , Cricetulus , Células CHO , Arilamina N-Acetiltransferasa/genética , Arilamina N-Acetiltransferasa/metabolismo , Daño del ADN , Acetiltransferasas/genética , Genotipo , Estrés Oxidativo , Polimorfismo Genético , AcetilaciónRESUMEN
Purpose: This study aimed to explore children's lived experiences with the Ontario Student Nutrition Program (OSNP), a free, school-based snack program implemented in elementary schools in Southwestern, Ontario, Canada, to gain insights into future school food programs (SFP).Methods: Focus group discussions (n=17) were conducted with 105 children in Grades 5 to 8 in seven elementary schools. Focus groups were audio-recorded, transcribed, and coded for themes using inductive content analysis.Results: Overall, children appreciated the OSNP and felt that it filled a need in students. Children also reported a willingness to try novel food items. For future SFPs, participants recommended that input be sought from children to ensure food preferences were considered. Children also discussed wanting more appealing food offerings that may include some choice. Finally, children also mentioned wanting a fair and equitable distribution of food in classrooms.Conclusions: Children appreciated the OSNP and reported benefits to themselves and their peers. They also provided some valuable recommendations for future SFPs. If a nationally funded SFP is to be considered in Canada, children expressed the need to make the program equitable, while still allowing schools the flexibility to meet their unique needs and preferences.
Asunto(s)
Preferencias Alimentarias , Alimentos , Humanos , Niño , Ontario , Estudiantes , Estado NutricionalRESUMEN
Lung cancer is the leading cause of cancer deaths in the United States with high incidence in tobacco smokers. Arylamine N-acetyltransferase 2 (NAT2) is a xenobiotic enzyme that catalyzes both N- and O-acetylation of carcinogens present in tobacco smoke and contributes towards the genotoxicity of these carcinogens. NAT2 allelic variants result in slow, intermediate, and rapid acetylation phenotypes. A recent meta-analysis reported NAT2 non-rapid (slow and intermediate) phenotypes had a significantly increased risk of lung cancer. NAT2 activity in humans is thought to be restricted to liver and gastrointestinal tract, and no studies to our knowledge have reported the expression of NAT2 activity in immortalized human lung epithelial cells. Given the importance of NAT2 in cancer and inhalation of various carcinogens directly into the lungs, we investigated NAT2 activity in human lung epithelial cells. Both NAT1 and NAT2 protein were detected by "in-cell" Western. Arylamine N-acetyltransferase activity was determined with selective substrates for NAT1 (p-aminobenzoic acid; PABA) and NAT2 (sulfamethazine; SMZ) in the presence and absence of a selective NAT1 inhibitor. PABA N-acetylation (NAT1 activity) in cell protein lysates was abolished in the presence of 25 µM of NAT1 inhibitor whereas SMZ N-acetylation (NAT2) was unaffected. Incubation with the NAT1 inhibitor partially reduced the N-acetylation of ß-naphthylamine and the O-acetylation of N-hydroxy-4-aminobiphenyl consistent with catalysis by both NAT1 and NAT2. Immortalized human lung epithelial cells exhibited dose-dependent N-acetylation of 4-ABP with an apparent KM of 24.4 ± 5.1 µM. These data establish that NAT2 is expressed and functional in immortalized human lung epithelial cells and will help us further our understanding of NAT2 in lung cancer.
Asunto(s)
Arilamina N-Acetiltransferasa , Neoplasias Pulmonares , Ácido 4-Aminobenzoico/metabolismo , Acetilación , Arilamina N-Acetiltransferasa/genética , Arilamina N-Acetiltransferasa/metabolismo , Carcinógenos/metabolismo , Células Epiteliales/metabolismo , Humanos , Isoenzimas/genéticaRESUMEN
Humans are exposed to carcinogenic chemicals via occupational and environmental exposures. Common chemicals of concern that can occur in exposures together are aromatic amines (e.g., 4-aminobiphenyl [4-ABP] and ß-naphthylamine [BNA]) and hexavalent chromium (Cr[VI]). Arylamine N-acetyltransferases 1 and 2 (NAT1 and NAT2) are key to the metabolism of aromatic amines and their genotoxicity. The effects of Cr(VI) on the metabolism of aromatic amines remains unknown as well as how it may affect their ensuing toxicity. The objective of the research presented here is to investigate the effects of Cr(VI) on the metabolism and genotoxicity of 4-ABP and BNA in immortalized human lung epithelial cells (BEP2D) expressing NAT1 and NAT2. Exposure to Cr(VI) for 48 h increased NAT1 activity (linear regression analysis: P < 0.0001) as measured by N-acetylation of para-aminobenzoic acid (PABA) in BEP2D cells but not NAT2 N-acetylation of sulfamethazine, which are prototypic NAT1 and NAT2 substrates respectively. Cr(VI) also increased the N-acetylation of 4-ABP and BNA. In BEP2D cells the N-acetylation of 4-ABP (1-3 µM) exhibited a dose-dependent increase (linear regression analysis: P < 0.05) following co-incubation with 0-3 µM Cr(VI). In BEP2D cells, incubation with Cr(VI) caused dose-dependent increases (linear regression analysis: P < 0.01) in expression of CYP1A1 protein and catalytic activity. For genotoxicity, BEP2D cells were exposed to 4-ABP or BNA with/without Cr(VI) for 48 h. We observed dose-dependent increases (linear regression analysis: P < 0.01) in phospho-γH2AX protein expression for combined treatment of 4-ABP or BNA with Cr(VI). Further using a CYP1A1 inhibitor (α-naphthoflavone) and NAT1 siRNA, we found that CYP1A1 inhibition did not reduce the increased N-acetylation or genotoxicity of BNA by Cr(VI), while NAT1 inhibition did reduce increases in BNA N-acetylation and genotoxicity by Cr(VI). We conclude that during co-exposure of aromatic amines and Cr(VI) in human lung cells, Cr(VI) increased NAT1 activity contributing to increased 4-ABP and BNA genotoxicity.
Asunto(s)
Arilamina N-Acetiltransferasa , Carcinógenos , 2-Naftilamina , Acetilación , Acetiltransferasas/metabolismo , Aminas/toxicidad , Compuestos de Aminobifenilo , Arilamina N-Acetiltransferasa/genética , Arilamina N-Acetiltransferasa/metabolismo , Carcinógenos/metabolismo , Carcinógenos/toxicidad , Cromo , Citocromo P-450 CYP1A1/metabolismo , Células Epiteliales/metabolismo , Humanos , Isoenzimas/genética , Pulmón/metabolismoRESUMEN
The hippocampus, which provides cognitive functions, has been shown to become highly vulnerable during aging. One important modulator of the hippocampal neural network is the medial septum (MS). The present study attempts to determine how age-related mnemonic dysfunction is associated with neurochemical changes in the septohippocampal (SH) system, using behavioral and immunochemical experiments performed on young-adult, middle-aged and aged rats. According to these behavioral results, the aged and around 52.8% of middle-aged rats (within the "middle-aged-impaired" sub-group) showed both impaired spatial reference memory in the Morris water maze and habituation in the open field. Immunohistochemical studies revealed a significant decrease in the number of MS choline acetyltransferase immunoreactive cells in the aged and all middle-aged rats, in comparison to the young; however the number of gamma-aminobutyric acid-ergic (GABAergic) parvalbumin immunoreactive cells was higher in middle-aged-impaired and older rats compared to young and middle-aged-unimpaired rats. Western Blot analysis moreover showed a decrease in the level of expression of cholinergic, GABAergic and glutamatergic receptors in the hippocampus of middle-aged-impaired and aged rats in contrast to middle-aged-unimpaired and young rats. The present results demonstrate for the first time that a decrease in the expression level of hippocampal receptors in naturally aged rats with impaired cognitive abilities occurs in parallel with an increase in the number of GABAergic neurons in the MS, and it highlights the particular importance of inhibitory signaling in the SH network for memory function.
Asunto(s)
Hipocampo , Trastornos de la Memoria , Animales , Colinérgicos/metabolismo , Hipocampo/metabolismo , Humanos , Aprendizaje por Laberinto/fisiología , Neuronas/metabolismo , Ratas , Receptores de Neurotransmisores/metabolismo , Memoria Espacial , Ácido gamma-Aminobutírico/metabolismoRESUMEN
ß-naphthylamine (BNA) is an important aromatic amine carcinogen. Current exposures derive primarily from cigarette smoking including e-cigarettes. Occupational and environmental exposure to BNA is associated with urinary bladder cancer which is the fourth most frequent cancer in the United States. N-acetyltransferase 2 (NAT2) is an important metabolizing enzyme for aromatic amines. Previous studies investigated mutagenicity and genotoxicity of BNA in bacteria and in rabbit or rat hepatocytes. However, the effects of human NAT2 genetic polymorphism on N-acetylation and genotoxicity induced by BNA still need to be clarified. We used nucleotide excision repair-deficient Chinese hamster ovary (CHO) cells that were stably transfected with human CYP1A2 and NAT2 alleles: NAT2*4 (reference allele), NAT2*5B (variant slow acetylator allele common in Europe) or NAT2*7B (variant slow acetylator allele common in Asia). BNA N-acetylation was measured both in vitro and in situ via high-performance liquid chromatography (HPLC). Hypoxanthine phosphoribosyl transferase (HPRT) mutations, double-strand DNA breaks, and reactive oxygen species (ROS) were measured as indices of toxicity. NAT2*4 cells showed significantly higher BNA N-acetylation rates followed by NAT2*7B and NAT2*5B. BNA caused concentration-dependent increases in DNA damage and ROS levels. NAT2*7B showed significantly higher levels of HPRT mutants, DNA damage and ROS than NAT2*5B (p < 0.001, p < 0.0001, p < 0.0001 respectively) although both are slow alleles. Our findings suggest that BNA N-acetylation and toxicity are modified by NAT2 polymorphism. Furthermore, they confirm heterogeneity among slow acetylator alleles for BNA metabolism and toxicity supporting differential risk for individuals carrying NAT2*7B allele.
Asunto(s)
Arilamina N-Acetiltransferasa , Sistemas Electrónicos de Liberación de Nicotina , 2-Naftilamina , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Animales , Arilamina N-Acetiltransferasa/genética , Arilamina N-Acetiltransferasa/metabolismo , Células CHO , Carcinógenos/toxicidad , Cricetinae , Cricetulus , Citocromo P-450 CYP1A2/metabolismo , Genotipo , Haplotipos , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantinas , Conejos , Ratas , Especies Reactivas de OxígenoRESUMEN
We used cryopreserved human hepatocytes that express rapid, intermediate, and slow acetylator N-acetyltransferase 2 (NAT2) genotypes to measure the N-acetylation of ß-naphthylamine (BNA) which is one of the aromatic amines found in cigarette smoke including E-cigarettes. We investigated the role of NAT2 genetic polymorphism in genotoxicity and oxidative stress induced by BNA. In vitro BNA NAT2 activities in rapid acetylators was 1.6 and 3.5-fold higher than intermediate (p < 0.01) and slow acetylators (p < 0.0001). BNA N-acetylation in situ was 3 to 4- fold higher in rapid acetylators than slow acetylators, following incubation with 10 and 100 µM BNA (p < 0.01). DNA damage was two to threefold higher in the rapid versus slow acetylators (p < 0.0001) and 2.5-fold higher in intermediate versus slow acetylators following BNA treatment at 100 and 1000 µM, ROS/RNS level was the highest in rapid acetylators followed by intermediate and then slow acetylators (p < 0.0001). Our findings show that the N-acetylation of BNA is NAT2 genotype dependent in cryopreserved human hepatocytes and our data further document an important role for NAT2 genetic polymorphism in modifying BNA-induced genotoxicity and oxidative damage.
Asunto(s)
Arilamina N-Acetiltransferasa , Sistemas Electrónicos de Liberación de Nicotina , Humanos , Carcinógenos/toxicidad , Arilamina N-Acetiltransferasa/genética , Arilamina N-Acetiltransferasa/metabolismo , 2-Naftilamina , Acetilación , Especies Reactivas de Oxígeno , Genotipo , Hepatocitos/metabolismo , Acetiltransferasas/genética , AminasRESUMEN
Arylamine N-acetyltransferase 1 (NAT1) plays a pivotal role in the metabolism of carcinogens and is a drug target for cancer prevention and/or treatment. A protein-ligand virtual screening of 2 million chemicals was ranked for predicted binding affinity towards the inhibition of human NAT1. Sixty of the five hundred top-ranked compounds were tested experimentally for inhibition of recombinant human NAT1 and N-acetyltransferase 2 (NAT2). The most promising compound 9,10-dihydro-9,10-dioxo-1,2-anthracenediyl diethyl ester (compound 10) was found to be a potent and selective NAT1 inhibitor with an in vitro IC50 of 0.75 µM. Two structural analogs of this compound were selective but less potent for inhibition of NAT1 whereas a third structural analog 1,2-dihydroxyanthraquinone (a compound 10 hydrolysis product also known as Alizarin) showed comparable potency and efficacy for human NAT1 inhibition. Compound 10 inhibited N-acetylation of the arylamine carcinogen 4-aminobiphenyl (ABP) both in vitro and in DNA repair-deficient Chinese hamster ovary (CHO) cells in situ stably expressing human NAT1 and CYP1A1. Compound 10 and Alizarin effectively inhibited NAT1 in cryopreserved human hepatocytes whereas inhibition of NAT2 was not observed. Compound 10 caused concentration-dependent reductions in DNA adduct formation and DNA double-strand breaks following metabolism of aromatic amine carcinogens beta-naphthylamine and/or ABP in CHO cells. Compound 10 inhibited proliferation and invasion in human breast cancer cells and showed selectivity towards tumorigenic versus non-tumorigenic cells. In conclusion, our study identifies potent, selective, and efficacious inhibitors of human NAT1. Alizarin's ability to inhibit NAT1 could reduce breast cancer metastasis particularly to bone.
Asunto(s)
Arilamina N-Acetiltransferasa/antagonistas & inhibidores , Neoplasias de la Mama/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Isoenzimas/antagonistas & inhibidores , Animales , Antraquinonas/farmacología , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Células CHO , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Simulación por Computador , Cricetinae , Cricetulus , Aductos de ADN/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Inhibidores Enzimáticos/administración & dosificación , Hepatocitos/enzimología , Humanos , Concentración 50 InhibidoraRESUMEN
The SARS-CoV-2 virus, which caused the COVID-19 infection, was discovered two and a half years ago. It caused a global pandemic, resulting in millions of deaths and substantial damage to the worldwide economy. Currently, only a few vaccines and antiviral drugs are available to combat SARS-CoV-2. However, there has been an increase in virus-related research, including exploring new drugs and their repurposing. Since discovering penicillin, natural products, particularly those derived from microbes, have been viewed as an abundant source of lead compounds for drug discovery. These compounds treat bacterial, fungal, parasitic, and viral infections. This review incorporates evidence from the available research publications on isolated and identified natural products derived from microbes with anti-hepatitis, anti-herpes simplex, anti-HIV, anti-influenza, anti-respiratory syncytial virus, and anti-SARS-CoV-2 properties. About 131 compounds with in vitro antiviral activity and 1 compound with both in vitro and in vivo activity have been isolated from microorganisms, and the mechanism of action for some of these compounds has been described. Recent reports have shown that natural products produced by the microbes, such as aurasperone A, neochinulin A and B, and aspulvinone D, M, and R, have potent in vitro anti-SARS-CoV-2 activity, targeting the main protease (Mpro). In the near and distant future, these molecules could be used to develop antiviral drugs for treating infections and preventing the spread of disease.
Asunto(s)
Productos Biológicos , Tratamiento Farmacológico de COVID-19 , Antivirales/farmacología , Antivirales/uso terapéutico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Humanos , Pandemias , SARS-CoV-2RESUMEN
The CUPID-Mo experiment at the Laboratoire Souterrain de Modane (France) is a demonstrator for CUPID, the next-generation ton-scale bolometric 0νßß experiment. It consists of a 4.2 kg array of 20 enriched Li_{2}^{100}MoO_{4} scintillating bolometers to search for the lepton-number-violating process of 0νßß decay in ^{100}Mo. With more than one year of operation (^{100}Mo exposure of 1.17 kg×yr for physics data), no event in the region of interest and, hence, no evidence for 0νßß is observed. We report a new limit on the half-life of 0νßß decay in ^{100}Mo of T_{1/2}>1.5×10^{24} yr at 90% C.I. The limit corresponds to an effective Majorana neutrino mass ⟨m_{ßß}⟩<(0.31-0.54) eV, dependent on the nuclear matrix element in the light Majorana neutrino exchange interpretation.
RESUMEN
OBJECTIVE: Fruits and vegetables (FV) distribution interventions have been implemented as a public health strategy to increase children's intake of FV at school settings. The purpose of this review was to examine whether snack-based FV distribution interventions can improve school-aged children's consumption of FV. DESIGN: Systematic review and meta-analysis of articles published in English, in a peer-reviewed journals, were identified by searching six databases up to August 2020. Standardised mean differences (SMD) and 95 % CI were calculated using a random effects model. Heterogeneity was quantified using I2 statistics. SETTING: Population-based studies of interventions where the main focus was the effectiveness of distributed FV as snacks to schoolchildren in North America, Europe and Pacific were included. RESULTS: Forty-seven studies, reporting on fifteen different interventions, were identified; ten studies were included in the meta-analysis. All interventions were effective in increasing children's consumption of FV, with only one intervention demonstrating a null effect. Pooled results under all classifications showed effectiveness in improving children's consumption of FV, particularly for multi-component interventions at post-intervention (SMD 0·20, 95 % CI 0·13, 0·27) and free distribution interventions at follow-up (SMD 0·19, 95 % CI 0·12, 0·27). CONCLUSIONS: Findings suggest that FV distribution interventions provide a promising avenue by which children's consumption can be improved. Nonetheless, our results are based on a limited number of studies, and further studies should be performed to confirm these results. More consistent measurement protocols in terms of rigorous study methodologies, intervention duration and follow-up evaluation are needed to improve comparability across studies.
Asunto(s)
Frutas , Verduras , Niño , Humanos , Evaluación de Resultado en la Atención de Salud , Instituciones Académicas , BocadillosRESUMEN
Arylamine N-acetyltransferases are xenobiotic-metabolizing enzymes responsible for detoxification of many drugs and carcinogens. Two N-acetyltransferase proteins (NAT1 and NAT2) are expressed in humans and they both N-acetylate aromatic amine carcinogens such as 4-aminobiphenyl. Arylamines such as 4-aminobiphenyl represent a large class of chemical carcinogens. Exposure to 4-aminobiphenyl occurs in the chemical, dye and rubber industries as well as in hair dyes, paints, and cigarette smoke. NAT2 is subject to a genetic polymorphism resulting in rapid, intermediate and slow acetylator phenotypes. We investigated the role of the NAT2 genetic polymorphisms on the N-acetylation of 4-aminobiphenyl in cryopreserved human hepatocytes in which NAT2 genotype and deduced phenotype were determined. Differences in sulfamethazine (selectively N-acetylated via NAT2) and 4-aminobiphenyl (N-acetylated by both NAT1 and NAT2) N-acetylation rates among rapid, intermediate, and slow NAT2 acetylator genotypes were tested for significance by one-way analysis of variance. In vitro 4-aminobiphenyl N-acetyltransferase activities differed significantly between rapid, intermediate and slow acetylators at 10 µM (P = 0.0102) or 100 µM (P = 0.0028). N-acetylation of 4-aminobiphenyl in situ also differed significantly between human hepatocytes from rapid, intermediate, and slow acetylators at 10 µM (P = 0.0015) and 100 µM (P = 0.0216). A gene dose-response relationship was exhibited as intermediate acetylators catalyzed 4-aminobiphenyl N-acetylation both in vitro and in situ at rates arithmetically between rapid and slow acetylators. In conclusion, N-acetylation of 4-aminobiphenyl is NAT2 genotype-dependent in human hepatocytes. These results suggest refinement of the exposure limit and safety for arylamine carcinogens according to NAT2 genotype.
Asunto(s)
Compuestos de Aminobifenilo/metabolismo , Arilamina N-Acetiltransferasa/genética , Arilamina N-Acetiltransferasa/metabolismo , Hepatocitos/enzimología , Acetilación , Carcinógenos/metabolismo , Criopreservación , Estudios de Asociación Genética , Genotipo , Hepatocitos/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Fenotipo , Polimorfismo Genético , Sulfametazina/metabolismoRESUMEN
The medial septum (MS) is an important modulator of hippocampal function. The degree of damage in which the particular set of septo-hippocampal projections contributes to the deficits of spatial memory with concomitant changes of hippocampal receptors expression has not been studied till present. Therefore, we investigated spatial memory and the expression level of cholinergic (α7 nACh and M1), GABAergic (α1 subunit of GABAA) and glutamatergic (NR2B subunit of NMDA and GluR 1 subunit of AMPA) receptors in the hippocampus following selective lesions of cholinergic and GABAergic septo-hippocampal projection. Learning process and long-term spatial memory were assessed using a Morris water maze. The obtained results revealed that in contrast to cholinergic lesions, rats with MS GABAergic lesions exhibit a retention deficit in 3 days after training. Western blot analyses revealed the MS cholinergic lesions have significant effect on the expression level of the M1 mACh receptors, while MS GABAergic lesions induce dramatic modulations of hippocampal glutamatergic, cholinergic and GABAergic receptors expression. These results for the first time demonstrated that selective lesions of MS cholinergic and GABAergic neurons differentially affect long-term spatial memory and the memory deficit after MS GABAergic lesion is paralleled with significant changes of hippocampal glutamate, GABA and acetylcholine receptors expression.
Asunto(s)
Neuronas GABAérgicas , Memoria Espacial , Animales , Colinérgicos , Hipocampo , Aprendizaje por Laberinto , Ratas , Receptores de NeurotransmisoresRESUMEN
Bordetella pertussis, a strictly human re-emerging pathogen and the causative agent of whooping cough, exploits a broad variety of virulence factors to establish efficient infection. Here, we used RNA sequencing to analyse the changes in gene expression profiles of human THP-1 macrophages resulting from B. pertussis infection. In parallel, we attempted to determine the changes in intracellular B. pertussis-specific transcriptomic profiles resulting from interaction with macrophages. Our analysis revealed that global gene expression profiles in THP-1 macrophages are extensively rewired 6 h post-infection. Among the highly expressed genes, we identified those encoding cytokines, chemokines, and transcription regulators involved in the induction of the M1 and M2 macrophage polarization programmes. Notably, several host genes involved in the control of apoptosis and inflammation which are known to be hijacked by intracellular bacterial pathogens were overexpressed upon infection. Furthermore, in silico analyses identified large temporal changes in expression of specific gene subsets involved in signalling and metabolic pathways. Despite limited numbers of the bacterial reads, we observed reduced expression of majority of virulence factors and upregulation of several transcriptional regulators during infection suggesting that intracellular B. pertussis cells switch from virulent to avirulent phase and actively adapt to intracellular environment, respectively.
Asunto(s)
Bordetella pertussis/fisiología , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Macrófagos/metabolismo , Transcriptoma , Tos Ferina/genética , Tos Ferina/virología , Línea Celular , Células Cultivadas , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Interacciones Huésped-Patógeno/inmunología , Humanos , Macrófagos/inmunología , Macrófagos/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Tos Ferina/inmunologíaRESUMEN
The haptophyte Phaeocystis antarctica is endemic to the Southern Ocean, where iron supply is sporadic and its availability limits primary production. In iron fertilization experiments, P. antarctica showed a prompt and steady increase in cell abundance compared to heavily silicified diatoms along with enhanced colony formation. Here we utilized a transcriptomic approach to investigate molecular responses to alleviation of iron limitation in P. antarctica. We analyzed the transcriptomic response before and after (14 h, 24 h and 72 h) iron addition to a low-iron acclimated culture. After iron addition, we observed indicators of a quick reorganization of cellular energetics, from carbohydrate catabolism and mitochondrial energy production to anabolism. In addition to typical substitution responses from an iron-economic toward an iron-sufficient state for flavodoxin (ferredoxin) and plastocyanin (cytochrome c6 ), we found other genes utilizing the same strategy involved in nitrogen assimilation and fatty acid desaturation. Our results shed light on a number of adaptive mechanisms that P. antarctica uses under low iron, including the utilization of a Cu-dependent ferric reductase system and indication of mixotrophic growth. The gene expression patterns underpin P. antarctica as a quick responder to iron addition.
Asunto(s)
Diatomeas , Haptophyta , Aclimatación , Diatomeas/genética , Hierro , Fitoplancton , TranscriptomaRESUMEN
This quality-improvement initiative evaluated procedures to increase parental consent for students, 13 to 18+ years old, to access a school-based health clinic that provides primary and reproductive health care in a Hispanic immigrant neighborhood in the U.S. Southwest. Six consent-retrieval procedures were sequentially implemented. Procedures included school registration, competition, hand delivery, PTO meetings, self-consent, and mail. Age, grade, and number of completed consents were calculated and compared. The percentage of students with completed consents increased from 35% to 72%. Lessons learned include increasing the number of completed consents is difficult; however, it is important to increase students' access to health-care services.
Asunto(s)
Salud del Adolescente/etnología , Hispánicos o Latinos/estadística & datos numéricos , Consentimiento Paterno/estadística & datos numéricos , Padres/educación , Adolescente , Femenino , Humanos , Consentimiento Paterno/psicología , Padres/psicología , Servicios de Salud Escolar/organización & administración , Factores Socioeconómicos , Sudoeste de Estados UnidosRESUMEN
Adverse drug reactions are among the leading causes of death. Pharmacovigilance aims to monitor drugs after they have been released to the market in order to detect potential risks. Data sources commonly used to this end are spontaneous reports sent in by doctors or pharmaceutical companies. Reports alone are rather limited when it comes to detecting potential health risks. Routine statutory health insurance data, however, are a richer source since they not only provide a detailed picture of the patients' wellbeing over time, but also contain information on concomitant medication and comorbidities.To take advantage of their potential and to increase drug safety, we will further develop statistical methods that have shown their merit in other fields as a source of inspiration. A plethora of methods have been proposed over the years for spontaneous reporting data: a comprehensive comparison of these methods and their potential use for longitudinal data should be explored. In addition, we show how methods from machine learning could aid in identifying rare risks. We discuss these so-called enrichment analyses and how utilizing pharmaceutical similarities between drugs and similarities between comorbidities could help to construct risk profiles of the patients prone to experience an adverse drug event.Summarizing these methods will further push drug safety research based on healthcare claim data from German health insurances which form, due to their size, longitudinal coverage, and timeliness, an excellent basis for investigating adverse effects of drugs.