Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Molecules ; 26(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064778

RESUMEN

Kynurenic acid (KYNA) is derived from tryptophan, formed by the kynurenic pathway. KYNA is being widely studied as a biomarker for neurological and cardiovascular diseases, as it is found in ischemic conditions as a protective agent; however, little is known about its effect after ischemia-reperfusion in the vascular system. We induced ischemia for 30 min followed by 5 min reperfusion (I/R) in the rat aorta for KYNA evaluation using functional assays combined with proteomics. KYNA recovered the exacerbated contraction induced by phenylephrine and relaxation induced by acetylcholine or sodium nitroprussiate in the I/R aorta, with vessel responses returning to values observed without I/R. The functional recovery can be related to the antioxidant activity of KYNA, which may be acting on the endothelium-injury prevention, especially during reperfusion, and to proteins that regulate neurotransmission and cell repair/growth, expressed after the KYNA treatment. These proteins interacted in a network, confirming a protein profile expression for endothelium and neuron repair after I/R. Thus, the KYNA treatment had the ability to recover the functionality of injured ischemic-reperfusion aorta, by tissue repairing and control of neurotransmitter release, which reinforces its role in the post-ischemic condition, and can be useful in the treatment of such disease.


Asunto(s)
Aorta/patología , Ácido Quinurénico/uso terapéutico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Proteómica , Acetilcolina/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/fisiopatología , Modelos Animales de Enfermedad , Ácido Quinurénico/farmacología , Contracción Miocárdica/efectos de los fármacos , Daño por Reperfusión Miocárdica/fisiopatología , Nitroprusiato/farmacología , Fenilefrina/farmacología , Mapas de Interacción de Proteínas/efectos de los fármacos , Ratas Sprague-Dawley , Vasodilatación/efectos de los fármacos
2.
Artículo en Inglés | MEDLINE | ID: mdl-35432496

RESUMEN

Background: Endogenous phospholipases A2 (PLA2) play a fundamental role in inflammation, neurodegenerative diseases, apoptosis and cellular senescence. Neurotoxins with PLA2 activity are found in snake venoms from the Elapidae and Viperidae families. The mechanism of action of these neurotoxins have been studied using hippocampal and cerebellar neuronal cultures showing [Ca2+]i increase, mitochondrial depolarization and cell death. Astrocytes are rarely used as a model, despite being modulators at the synapses and responsible for homeostasis and defense in the central nervous system. Preserving the cell division ability, they can be utilized to study the cell proliferation process. In the present work cultured astrocytes and glioblastoma cells were employed to characterize the action of ß-micrustoxin (previously named Mlx-9), a PLA2 isolated from Micrurus lemniscatus snake venom. The ß-micrustoxin structure was determined and the cell proliferation, cell cycle phases and the regulatory proteins p53, p21 and p27 were investigated. Methods: ß-micrustoxin was characterized biochemically by a proteomic approach. Astrocytes were obtained by dissociation of pineal glands from Wistar rats; glioblastoma tumor cells were purchased from ATCC and Sigma and cultured in DMEM medium. Cell viability was evaluated by MTT assay; cell proliferation and cell cycle phases were analyzed by flow cytometry; p53, p21 and p27 proteins were studied by western blotting and immunocytochemistry. Results: Proteomic analysis revealed fragments on ß-micrustoxin that aligned with a PLA2 from Micrurus lemniscatus lemniscatus previously identified as transcript ID DN112835_C3_g9_i1/m.9019. ß-micrustoxin impaired the viability of astrocytes and glioblastoma tumor cells. There was a reduction in cell proliferation, an increase in G2/M phase and activation of p53, p21 and p27 proteins in astrocytes. Conclusion: These findings indicate that ß-micrustoxin from Micrurus lemniscatus venom could inhibit cell proliferation through p53, p21 and p27 activation thus imposing cell cycle arrest at the checkpoint G2/M.

3.
Sci Rep ; 12(1): 3890, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35273234

RESUMEN

The new outbreak of coronavirus disease 2019 (COVID-19) has infected and caused the death of millions of people worldwide. Intensive efforts are underway around the world to establish effective treatments. Immunoglobulin from immunized animals or plasma from convalescent patients might constitute a specific treatment to guarantee the neutralization of the virus in the early stages of infection, especially in patients with risk factors and a high probability of progressing to severe disease. Worldwide, a few clinical trials using anti-SARS-CoV-2 immunoglobulins from horses immunized with the entire spike protein or fragments of it in the treatment of patients with COVID-19 are underway. Here, we describe the development of an anti-SARS-CoV-2 equine F(ab')2 immunoglobulin using a newly developed SARS-CoV-2 viral antigen that was purified and inactivated by radiation. Cell-based and preclinical assays showed that the F(ab')2 immunoglobulin successfully neutralizes the virus, is safe in animal models, and reduces the severity of the disease in a hamster model of SARS-CoV-2 infection and disease.


Asunto(s)
COVID-19/terapia , Inmunoglobulinas/uso terapéutico , Receptores Inmunológicos/uso terapéutico , SARS-CoV-2/inmunología , Animales , Ensayo de Inmunoadsorción Enzimática , Femenino , Caballos/inmunología , Humanos , Inmunoglobulinas/inmunología , Inmunoglobulinas/aislamiento & purificación , Masculino , Mesocricetus/inmunología , Plasmaféresis/veterinaria , Receptores Inmunológicos/inmunología
4.
J Venom Anim Toxins Incl Trop Dis ; 27: e20200140, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33995513

RESUMEN

BACKGROUND: Tetanus toxin blocks the release of the inhibitory neurotransmitters in the central nervous system and causes tetanus and its main form of prevention is through vaccination. The vaccine is produced by inactivation of tetanus toxin with formaldehyde, which may cause side effects. An alternative way is the use of ionizing radiation for inactivation of the toxin and also to improve the potential immunogenic response and to reduce the post-vaccination side effects. Therefore, the aim of this study was to characterize the tetanus toxin structure after different doses of ionizing radiation of 60Co. METHODS: Irradiated and native tetanus toxin was characterized by SDS PAGE in reducing and non-reducing conditions and MALD-TOF. Enzymatic activity was measured by FRET substrate. Also, antigenic properties were assessed by ELISA and Western Blot data. RESULTS: Characterization analysis revealed gradual modification on the tetanus toxin structure according to doses increase. Also, fragmentation and possible aggregations of the protein fragments were observed in higher doses. In the analysis of peptide preservation by enzymatic digestion and mass spectrometry, there was a slight modification in the identification up to the dose of 4 kGy. At subsequent doses, peptide identification was minimal. The analysis of the enzymatic activity by fluorescence showed 35 % attenuation in the activity even at higher doses. In the antigenic evaluation, anti-tetanus toxin antibodies were detected against the irradiated toxins at the different doses, with a gradual decrease as the dose increased, but remaining at satisfactory levels. CONCLUSION: Ionizing radiation promoted structural changes in the tetanus toxin such as fragmentation and/or aggregation and attenuation of enzymatic activity as the dose increased, but antigenic recognition of the toxin remained at good levels indicating its possible use as an immunogen. However, studies of enzymatic activity of tetanus toxin irradiated with doses above 8 kGy should be further analyzed.

5.
Artículo en Inglés | MEDLINE | ID: mdl-31467513

RESUMEN

BACKGROUND: Bufonid parotoid macrogland secretion contains several low molecular mass molecules, such as alkaloids and steroids. Nevertheless, its protein content is poorly understood. Herein, we applied a sample preparation methodology that allows the analysis of viscous matrices in order to examine its proteins. METHODS: Duttaphrynus melanostictus parotoid macrogland secretion was submitted to ion-exchange batch sample preparation, yielding two fractions: salt-displaced fraction and acid-displaced fraction. Each sample was then fractionated by anionic-exchange chromatography, followed by in-solution proteomic analysis. RESULTS: Forty-two proteins could be identified, such as acyl-CoA-binding protein, alcohol dehydrogenase, calmodulin, galectin and histone. Moreover, de novo analyses yielded 153 peptides, whereas BLAST analyses corroborated some of the proteomic-identified proteins. Furthermore, the de novo peptide analyses indicate the presence of proteins related to apoptosis, cellular structure, catalysis and transport processes. CONCLUSIONS: Proper sample preparation allowed the proteomic and de novo identification of different proteins in the D. melanostictus parotoid macrogland secretion. These results may increase the knowledge about the universe of molecules that compose amphibian skin secretion, as well as to understand their biological/physiological role in the granular gland.

6.
Toxins (Basel) ; 11(4)2019 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-30935107

RESUMEN

Although omics studies have indicated presence of proteases on the Tityus serrulatus venom (TsV), little is known about the function of these molecules. The TsV contains metalloproteases that cleave a series of human neuropeptides, including the dynorphin A (1-13) and the members of neuropeptide Y family. Aiming to isolate the proteases responsible for this activity, the metalloserrulase 3 and 4 (TsMS 3 and TsMS 4) were purified after two chromatographic steps and identified by mass spectrometry analysis. The biochemical parameters (pH, temperature and cation effects) were determined for both proteases, and the catalytic parameters (Km, kcat, cleavage sites) of TsMS 4 over fluorescent substrate were obtained. The metalloserrulases have a high preference for cleaving neuropeptides but presented different primary specificities. For example, the Leu-enkephalin released from dynorphin A (1-13) hydrolysis was exclusively performed by TsMS 3. Neutralization assays using Butantan Institute antivenoms show that both metalloserrulases were well blocked. Although TsMS 3 and TsMS 4 were previously described through cDNA library studies using the venom gland, this is the first time that both these toxins were purified. Thus, this study represents a step further in understanding the mechanism of scorpion venom metalloproteases, which may act as possible neuropeptidases in the envenomation process.


Asunto(s)
Proteínas de Artrópodos , Metaloproteasas , Venenos de Escorpión/enzimología , Animales , Antivenenos/química , Proteínas de Artrópodos/química , Proteínas de Artrópodos/aislamiento & purificación , Catálisis , Humanos , Hidrólisis , Metaloproteasas/química , Metaloproteasas/aislamiento & purificación , Neuropéptidos/química , Escorpiones
7.
J. venom. anim. toxins incl. trop. dis ; 27: e20200140, 2021. graf, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1250256

RESUMEN

Tetanus toxin blocks the release of the inhibitory neurotransmitters in the central nervous system and causes tetanus and its main form of prevention is through vaccination. The vaccine is produced by inactivation of tetanus toxin with formaldehyde, which may cause side effects. An alternative way is the use of ionizing radiation for inactivation of the toxin and also to improve the potential immunogenic response and to reduce the post-vaccination side effects. Therefore, the aim of this study was to characterize the tetanus toxin structure after different doses of ionizing radiation of 60Co. Methods Irradiated and native tetanus toxin was characterized by SDS PAGE in reducing and non-reducing conditions and MALD-TOF. Enzymatic activity was measured by FRET substrate. Also, antigenic properties were assessed by ELISA and Western Blot data. Results Characterization analysis revealed gradual modification on the tetanus toxin structure according to doses increase. Also, fragmentation and possible aggregations of the protein fragments were observed in higher doses. In the analysis of peptide preservation by enzymatic digestion and mass spectrometry, there was a slight modification in the identification up to the dose of 4 kGy. At subsequent doses, peptide identification was minimal. The analysis of the enzymatic activity by fluorescence showed 35 % attenuation in the activity even at higher doses. In the antigenic evaluation, anti-tetanus toxin antibodies were detected against the irradiated toxins at the different doses, with a gradual decrease as the dose increased, but remaining at satisfactory levels. Conclusion Ionizing radiation promoted structural changes in the tetanus toxin such as fragmentation and/or aggregation and attenuation of enzymatic activity as the dose increased, but antigenic recognition of the toxin remained at good levels indicating its possible use as an immunogen. However, studies of enzymatic activity of tetanus toxin irradiated with doses above 8 kGy should be further analyzed.(AU)


Asunto(s)
Radiación Ionizante , Tétanos , Ensayo de Inmunoadsorción Enzimática , Rayos gamma , Toxina Tetánica , Cobalto
8.
Artículo en Inglés | MEDLINE | ID: mdl-25181950

RESUMEN

The presence of peptides has been identified in all African pipid genera; nevertheless, little is known about skin secretion of South American frog genus Pipa. Skin secretion from captive and wild Pipa carvalhoi were obtained in the presence or absence of norepinephrine stimulation. The <10 kDa fraction was analyzed by liquid chromatography and mass spectrometry, searching for peptides. Chromatographic profiles show the presence of a major component in this secretion, regardless of the stimulation method (norepinephrine or mechanical stimulation) and the origin of the animal (captivity or wild), as well as in the absence of any stimulus. The general mass distribution profile in P. carvalhoi skin secretion shows numerous components below 800 Da. Moreover, no peptide could be identified, regardless of the chromatographic approach. The major component was purified and identified as kynurenic acid, an L-tryptophan derivative. P. carvalhoi does not secrete peptides as toxins in its skin. In addition, we here report that kynurenic acid is the main component of P. carvalhoi skin secretion. Although no biological activity was associated with kynurenic acid, we propose that this molecule is a pheromone that signals the presence of a co-specific in the shady environment in which this animal lives. In this study we demonstrate the absence of peptidic toxins in the skin secretion of P. carvalhoi, a break of paradigm in the pipid family.


Asunto(s)
Anuros/metabolismo , Ácido Quinurénico/metabolismo , Piel/metabolismo , Animales , Fenómenos Químicos
9.
J. venom. anim. toxins incl. trop. dis ; 25: e20190029, 2019. tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1020025

RESUMEN

Bufonid parotoid macrogland secretion contains several low molecular mass molecules, such as alkaloids and steroids. Nevertheless, its protein content is poorly understood. Herein, we applied a sample preparation methodology that allows the analysis of viscous matrices in order to examine its proteins. Methods: Duttaphrynus melanostictus parotoid macrogland secretion was submitted to ion-exchange batch sample preparation, yielding two fractions: salt-displaced fraction and acid-displaced fraction. Each sample was then fractionated by anionic-exchange chromatography, followed by in-solution proteomic analysis. Results: Forty-two proteins could be identified, such as acyl-CoA-binding protein, alcohol dehydrogenase, calmodulin, galectin and histone. Moreover, de novo analyses yielded 153 peptides, whereas BLAST analyses corroborated some of the proteomic-identified proteins. Furthermore, the de novo peptide analyses indicate the presence of proteins related to apoptosis, cellular structure, catalysis and transport processes. Conclusions: Proper sample preparation allowed the proteomic and de novo identification of different proteins in the D. melanostictus parotoid macrogland secretion. These results may increase the knowledge about the universe of molecules that compose amphibian skin secretion, as well as to understand their biological/physiological role in the granular gland.(AU)


Asunto(s)
Animales , Esteroides , Bufonidae/parasitología , Proteómica , Alcaloides
10.
Biomed Res Int ; 2013: 537279, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24350274

RESUMEN

Organochalcogens, particularly ebselen, have been used in experimental and clinical trials with borderline efficacy. (PhSe)2 and (PhTe)2 are the simplest of the diaryl dichalcogenides and share with ebselen pharmacological properties. In view of the concerns with the use of mammals in studies and the great number of new organochalcogens with potential pharmacological properties that have been synthesized, it becomes important to develop screening protocols to select compounds that are worth to be tested in vivo. This study investigated the possible use of isolated human white cells as a preliminary model to test organochalcogen toxicity. Human leucocytes were exposed to 5-50 µM of ebselen, (PhSe)2, or (PhTe)2. All compounds were cytotoxic (Trypan's Blue exclusion) at the highest concentration tested, and Ebselen was the most toxic. Ebselen and (PhSe)2 were genotoxic (Comet Assay) only at 50 µM, and (PhTe)2 at 5-50 µM. Here, the acute cytotoxicity did not correspond with in vivo toxicity of the compounds. But the genotoxicity was in the same order of the in vivo toxicity to mice. These results indicate that in vitro genotoxicity in white blood cells should be considered as an early step in the investigation of potential toxicity of organochalcogens.


Asunto(s)
Azoles/farmacología , Derivados del Benceno/farmacología , Leucocitos/efectos de los fármacos , Mutágenos/farmacología , Compuestos Organometálicos/farmacología , Compuestos de Organoselenio/farmacología , Humanos , Isoindoles , Pruebas de Mutagenicidad/métodos
11.
Springerplus ; 2(1): 182, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23658858

RESUMEN

The organic tellurium compound (S)-dimethyl 2-(3-(phenyltellanyl) propanamide) succinate (TeAsp) exhibits thiol-peroxidase activity that could potentially offer protection against oxidative stress. However, data from the literature show that tellurium is a toxic agent to rodents. In order to mitigate such toxicity, N-acetylcysteine (NAC) was administered in parallel with TeAsp during 10 days. Mice were separated into four groups receiving daily injections of (A) vehicle (PBS 2.5 ml/kg, i.p. and DMSO 1 ml/kg, s.c.), (B) NAC (100 mg/kg, i.p. and DMSO s.c.), (C) PBS i.p. and TeAsp (92.5 µmol/kg, s.c), or (D) NAC plus TeAsp. TeAsp treatment started on the fourth day. Vehicle or NAC-treated animals showed an increase in body weight whereas TeAsp caused a significant reduction. Contrary to expected, NAC co-administration potentiated the toxic effect of TeAsp, causing a decrease in body weight. Vehicle, NAC or TeAsp did not affect the exploratory and motor activity in the open-field test at the end of the treatment, while the combination of NAC and TeAsp produced a significant decrease in these parameters. No DNA damage or alterations in cell viability were observed in leukocytes of treated animals. Treatments produced no or minor effects on the activities of antioxidant enzymes catalase, glutathione peroxidase and glutathione reductase, whereas the activity of the thioredoxin reductase was decreased in the brain and increased the liver of the animals in the groups receiving TeAsp or TeAsp plus NAC. In conclusion, the toxicity of TeAsp was potentiated by NAC and oxidative stress appears to play a central role in this process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA