Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(7): 1110-1123, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37248420

RESUMEN

Cerebrovascular injury (CVI) is a common pathology caused by infections, injury, stroke, neurodegeneration and autoimmune disease. Rapid resolution of a CVI requires a coordinated innate immune response. In the present study, we sought mechanistic insights into how central nervous system-infiltrating monocytes program resident microglia to mediate angiogenesis and cerebrovascular repair after an intracerebral hemorrhage. In the penumbrae of human stroke brain lesions, we identified a subpopulation of microglia that express vascular endothelial growth factor A. These cells, termed 'repair-associated microglia' (RAMs), were also observed in a rodent model of CVI and coexpressed interleukin (IL)-6Ra. Cerebrovascular repair did not occur in IL-6 knockouts or in mice lacking microglial IL-6Ra expression and single-cell transcriptomic analyses revealed faulty RAM programming in the absence of IL-6 signaling. Infiltrating CCR2+ monocytes were the primary source of IL-6 after a CVI and were required to endow microglia with proliferative and proangiogenic properties. Faulty RAM programming in the absence of IL-6 or inflammatory monocytes resulted in poor cerebrovascular repair, neuronal destruction and sustained neurological deficits that were all restored via exogenous IL-6 administration. These data provide a molecular and cellular basis for how monocytes instruct microglia to repair damaged brain vasculature and promote functional recovery after injury.


Asunto(s)
Monocitos , Accidente Cerebrovascular , Ratones , Humanos , Animales , Microglía , Interleucina-6/genética , Interleucina-6/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Accidente Cerebrovascular/patología , Encéfalo/metabolismo , Ratones Endogámicos C57BL
2.
Nat Immunol ; 20(4): 407-419, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30886419

RESUMEN

Tissue macrophages have an embryonic origin and can be replenished in some tissues under steady-state conditions by blood monocytes. However, little is known about the residency and properties of infiltrating monocytes after an inflammatory challenge. The meninges of the central nervous system (CNS) are populated by a dense network of macrophages that act as resident immune sentinels. Here we show that, following lymphocytic choriomeningitis virus infection, resident meningeal macrophages (MMs) acquired viral antigen and interacted directly with infiltrating cytotoxic T lymphocytes, which led to macrophage depletion. Concurrently, the meninges were infiltrated by inflammatory monocytes that engrafted the meningeal niche and remained in situ for months after viral clearance. This engraftment led to interferon-γ-dependent functional changes in the pool of MMs, including loss of bacterial and immunoregulatory sensors. Collectively, these data indicate that peripheral monocytes can engraft the meninges after an inflammatory challenge, imprinting the compartment with long-term defects in immune function.


Asunto(s)
Sistema Nervioso Central/inmunología , Macrófagos/inmunología , Meningitis Viral/inmunología , Monocitos/inmunología , Animales , Inmunidad , Inflamación/inmunología , Interferón gamma/fisiología , Meninges/inmunología , Ratones
3.
Nature ; 628(8008): 612-619, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509366

RESUMEN

There is increasing interest in how immune cells in the meninges-the membranes that surround the brain and spinal cord-contribute to homeostasis and disease in the central nervous system1,2. The outer layer of the meninges, the dura mater, has recently been described to contain both innate and adaptive immune cells, and functions as a site for B cell development3-6. Here we identify organized lymphoid structures that protect fenestrated vasculature in the dura mater. The most elaborate of these dural-associated lymphoid tissues (DALT) surrounded the rostral-rhinal confluence of the sinuses and included lymphatic vessels. We termed this structure, which interfaces with the skull bone marrow and a comparable venous plexus at the skull base, the rostral-rhinal venolymphatic hub. Immune aggregates were present in DALT during homeostasis and expanded with age or after challenge with systemic or nasal antigens. DALT contain germinal centre B cells and support the generation of somatically mutated, antibody-producing cells in response to a nasal pathogen challenge. Inhibition of lymphocyte entry into the rostral-rhinal hub at the time of nasal viral challenge abrogated the generation of germinal centre B cells and class-switched plasma cells, as did perturbation of B-T cell interactions. These data demonstrate a lymphoid structure around vasculature in the dura mater that can sample antigens and rapidly support humoral immune responses after local pathogen challenge.


Asunto(s)
Duramadre , Inmunidad Humoral , Tejido Linfoide , Venas , Administración Intranasal , Antígenos/administración & dosificación , Antígenos/inmunología , Médula Ósea/inmunología , Sistema Nervioso Central/irrigación sanguínea , Sistema Nervioso Central/inmunología , Duramadre/irrigación sanguínea , Duramadre/inmunología , Centro Germinal/citología , Centro Germinal/inmunología , Vasos Linfáticos/inmunología , Tejido Linfoide/irrigación sanguínea , Tejido Linfoide/inmunología , Células Plasmáticas/inmunología , Cráneo/irrigación sanguínea , Linfocitos T/inmunología , Venas/fisiología , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Animales , Ratones , Anciano de 80 o más Años
4.
Nature ; 597(7878): 709-714, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34497421

RESUMEN

Multiple sclerosis (MS) lesions that do not resolve in the months after they form harbour ongoing demyelination and axon degeneration, and are identifiable in vivo by their paramagnetic rims on MRI scans1-3. Here, to define mechanisms underlying this disabling, progressive neurodegenerative state4-6 and foster development of new therapeutic agents, we used MRI-informed single-nucleus RNA sequencing to profile the edge of demyelinated white matter lesions at various stages of inflammation. We uncovered notable glial and immune cell diversity, especially at the chronically inflamed lesion edge. We define 'microglia inflamed in MS' (MIMS) and 'astrocytes inflamed in MS', glial phenotypes that demonstrate neurodegenerative programming. The MIMS transcriptional profile overlaps with that of microglia in other neurodegenerative diseases, suggesting that primary and secondary neurodegeneration share common mechanisms and could benefit from similar therapeutic approaches. We identify complement component 1q (C1q) as a critical mediator of MIMS activation, validated immunohistochemically in MS tissue, genetically by microglia-specific C1q ablation in mice with experimental autoimmune encephalomyelitis, and therapeutically by treating chronic experimental autoimmune encephalomyelitis with C1q blockade. C1q inhibition is a potential therapeutic avenue to address chronic white matter inflammation, which could be monitored by longitudinal assessment of its dynamic biomarker, paramagnetic rim lesions, using advanced MRI methods.


Asunto(s)
Astrocitos/patología , Linfocitos/patología , Microglía/patología , Esclerosis Múltiple/patología , Animales , Encéfalo/patología , Complemento C1q/antagonistas & inhibidores , Complemento C1q/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Inflamación/patología , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , RNA-Seq , Transcriptoma , Sustancia Blanca/patología
5.
Mol Cell ; 74(2): 347-362.e6, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30853401

RESUMEN

Selective autophagy recycles damaged organelles and clears intracellular pathogens to prevent their aberrant accumulation. How ULK1 kinase is targeted and activated during selective autophagic events remains to be elucidated. In this study, we used chemically inducible dimerization (CID) assays in tandem with CRISPR KO lines to systematically analyze the molecular basis of selective autophagosome biogenesis. We demonstrate that ectopic placement of NDP52 on mitochondria or peroxisomes is sufficient to initiate selective autophagy by focally localizing and activating the ULK1 complex. The capability of NDP52 to induce mitophagy is dependent on its interaction with the FIP200/ULK1 complex, which is facilitated by TBK1. Ectopically tethering ULK1 to cargo bypasses the requirement for autophagy receptors and TBK1. Focal activation of ULK1 occurs independently of AMPK and mTOR. Our findings provide a parsimonious model of selective autophagy, which highlights the coordination of ULK1 complex localization by autophagy receptors and TBK1 as principal drivers of targeted autophagosome biogenesis.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Autofagia/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Relacionadas con la Autofagia , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Células HeLa , Humanos , Mitocondrias/química , Mitocondrias/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Peroxisomas/química , Peroxisomas/genética , Fosforilación , Proteínas Quinasas/genética , Multimerización de Proteína , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/genética , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética
6.
Proc Natl Acad Sci U S A ; 119(15): e2110846119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35385353

RESUMEN

Ebola virus (EBOV) disease is characterized by lymphopenia, breach in vascular integrity, cytokine storm, and multiorgan failure. The pathophysiology of organ involvement, however, is incompletely understood. Using [18F]-DPA-714 positron emission tomography (PET) imaging targeting the translocator protein (TSPO), an immune cell marker, we sought to characterize the progression of EBOV-associated organ-level pathophysiology in the EBOV Rhesus macaque model. Dynamic [18F]-DPA-714 PET/computed tomography imaging was performed longitudinally at baseline and at multiple time points after EBOV inoculation, and distribution volumes (Vt) were calculated as a measure of peripheral TSPO binding. Using a mixed-effect linear regression model, spleen and lung Vt decreased, while the bone marrow Vt increased over time after infection. No clear trend was found for liver Vt. Multiple plasma cytokines correlated negatively with lung/spleen Vt and positively with bone marrow Vt. Multiplex immunofluorescence staining in spleen and lung sections confirmed organ-level lymphoid and monocytic loss/apoptosis, thus validating the imaging results. Our findings are consistent with EBOV-induced progressive monocytic and lymphocytic depletion in the spleen, rather than immune activation, as well as depletion of alveolar macrophages in the lungs, with inefficient reactive neutrophilic activation. Increased bone marrow Vt, on the other hand, suggests hematopoietic activation in response to systemic immune cell depletion and leukocytosis and could have prognostic relevance. In vivo PET imaging provided better understanding of organ-level pathophysiology during EBOV infection. A similar approach can be used to delineate the pathophysiology of other systemic infections and to evaluate the effectiveness of newly developed treatment and vaccine strategies.


Asunto(s)
Fiebre Hemorrágica Ebola , Tomografía de Emisión de Positrones , Receptores de GABA , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Fiebre Hemorrágica Ebola/diagnóstico por imagen , Fiebre Hemorrágica Ebola/patología , Pulmón/patología , Macaca mulatta , Tomografía de Emisión de Positrones/métodos , Pirazoles/metabolismo , Pirimidinas/metabolismo , Receptores de GABA/metabolismo , Bazo/patología
7.
Brain ; 146(8): 3162-3171, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37043503

RESUMEN

ATP1A3 encodes the α3 subunit of the sodium-potassium ATPase, one of two isoforms responsible for powering electrochemical gradients in neurons. Heterozygous pathogenic ATP1A3 variants produce several distinct neurological syndromes, yet the molecular basis for phenotypic variability is unclear. We report a novel recurrent variant, ATP1A3(NM_152296.5):c.2324C>T; p.(Pro775Leu), in nine individuals associated with the primary clinical features of progressive or non-progressive spasticity and developmental delay/intellectual disability. No patients fulfil diagnostic criteria for ATP1A3-associated syndromes, including alternating hemiplegia of childhood, rapid-onset dystonia-parkinsonism or cerebellar ataxia-areflexia-pes cavus-optic atrophy-sensorineural hearing loss (CAPOS), and none were suspected of having an ATP1A3-related disorder. Uniquely among known ATP1A3 variants, P775L causes leakage of sodium ions and protons into the cell, associated with impaired sodium binding/occlusion kinetics favouring states with fewer bound ions. These phenotypic and electrophysiologic studies demonstrate that ATP1A3:c.2324C>T; p.(Pro775Leu) results in mild ATP1A3-related phenotypes resembling complex hereditary spastic paraplegia or idiopathic spastic cerebral palsy. Cation leak provides a molecular explanation for this genotype-phenotype correlation, adding another mechanism to further explain phenotypic variability and highlighting the importance of biophysical properties beyond ion transport rate in ion transport diseases.


Asunto(s)
Ataxia Cerebelosa , Discapacidad Intelectual , Humanos , Mutación/genética , Síndrome , Discapacidad Intelectual/genética , Ataxia Cerebelosa/genética , Fenotipo , Espasticidad Muscular/genética , Cationes , ATPasa Intercambiadora de Sodio-Potasio/genética
8.
Neuroimage ; 276: 120198, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37245561

RESUMEN

Magnetic Resonance Imaging (MRI) resolution continues to improve, making it important to understand the cellular basis for different MRI contrast mechanisms. Manganese-enhanced MRI (MEMRI) produces layer-specific contrast throughout the brain enabling in vivo visualization of cellular cytoarchitecture, particularly in the cerebellum. Due to the unique geometry of the cerebellum, especially near the midline, 2D MEMRI images can be acquired from a relatively thick slice by averaging through areas of uniform morphology and cytoarchitecture to produce very high-resolution visualization of sagittal planes. In such images, MEMRI hyperintensity is uniform in thickness throughout the anterior-posterior axis of sagittal sections and is centrally located in the cerebellar cortex. These signal features suggested that the Purkinje cell layer, which houses the cell bodies of the Purkinje cells and the Bergmann glia, is the source of hyperintensity. Despite this circumstantial evidence, the cellular source of MRI contrast has been difficult to define. In this study, we quantified the effects of selective ablation of Purkinje cells or Bergmann glia on cerebellar MEMRI signal to determine whether signal could be assigned to one cell type. We found that the Purkinje cells, not the Bergmann glia, are the primary of source of the enhancement in the Purkinje cell layer. This cell-ablation strategy should be useful for determining the cell specificity of other MRI contrast mechanisms.


Asunto(s)
Cerebelo , Manganeso , Humanos , Manganeso/metabolismo , Cerebelo/patología , Células de Purkinje/metabolismo , Células de Purkinje/patología , Neuroglía/metabolismo , Imagen por Resonancia Magnética/métodos
9.
Brain ; 145(7): 2555-2568, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35788639

RESUMEN

The underlying mechanisms by which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to acute and long-term neurological manifestations remains obscure. We aimed to characterize the neuropathological changes in patients with coronavirus disease 2019 and determine the underlying pathophysiological mechanisms. In this autopsy study of the brain, we characterized the vascular pathology, the neuroinflammatory changes and cellular and humoral immune responses by immunohistochemistry. All patients died during the first wave of the pandemic from March to July 2020. All patients were adults who died after a short duration of the infection, some had died suddenly with minimal respiratory involvement. Infection with SARS-CoV-2 was confirmed on ante-mortem or post-mortem testing. Descriptive analysis of the pathological changes and quantitative analyses of the infiltrates and vascular changes were performed. All patients had multifocal vascular damage as determined by leakage of serum proteins into the brain parenchyma. This was accompanied by widespread endothelial cell activation. Platelet aggregates and microthrombi were found adherent to the endothelial cells along vascular lumina. Immune complexes with activation of the classical complement pathway were found on the endothelial cells and platelets. Perivascular infiltrates consisted of predominantly macrophages and some CD8+ T cells. Only rare CD4+ T cells and CD20+ B cells were present. Astrogliosis was also prominent in the perivascular regions. Microglial nodules were predominant in the hindbrain, which were associated with focal neuronal loss and neuronophagia. Antibody-mediated cytotoxicity directed against the endothelial cells is the most likely initiating event that leads to vascular leakage, platelet aggregation, neuroinflammation and neuronal injury. Therapeutic modalities directed against immune complexes should be considered.


Asunto(s)
COVID-19 , Enfermedades del Sistema Nervioso , Adulto , Complejo Antígeno-Anticuerpo , Activación de Complemento , Células Endoteliales , Humanos , Inflamación , SARS-CoV-2
10.
Proc Natl Acad Sci U S A ; 117(30): 17842-17853, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32669437

RESUMEN

Stem cells are capable of unlimited proliferation but can be induced to form brain cells. Factors that specifically regulate human development are poorly understood. We found that human stem cells expressed high levels of the envelope protein of an endogenized human-specific retrovirus (HERV-K, HML-2) from loci in chromosomes 12 and 19. The envelope protein was expressed on the cell membrane of the stem cells and was critical in maintaining the stemness via interactions with CD98HC, leading to triggering of human-specific signaling pathways involving mammalian target of rapamycin (mTOR) and lysophosphatidylcholine acyltransferase (LPCAT1)-mediated epigenetic changes. Down-regulation or epigenetic silencing of HML-2 env resulted in dissociation of the stem cell colonies and enhanced differentiation along neuronal pathways. Thus HML-2 regulation is critical for human embryonic and neurodevelopment, while it's dysregulation may play a role in tumorigenesis and neurodegeneration.


Asunto(s)
Diferenciación Celular , Retrovirus Endógenos/fisiología , Neuronas/metabolismo , Transducción de Señal , Células Madre/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Biomarcadores , Diferenciación Celular/genética , Autorrenovación de las Células/genética , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Regulación Viral de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Unión Proteica , Células Madre/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas del Envoltorio Viral/genética
11.
FASEB J ; 35(10): e21852, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34499774

RESUMEN

Postoperative pain and delayed healing in surgical wounds, which require complex management strategies have understudied complicated mechanisms. Here we investigated temporal changes in behavior, tissue structure, and transcriptomic profiles in a rat model of a surgical incision, using hyperalgesic behavioral tests, histological analyses, and next-generation RNA sequencing, respectively. The most rapidly (1 hour) expressed genes were the chemokines, Cxcl1 and Cxcl2. Consequently, infiltrating leukocytes were abundantly observed starting at 6 and peaking at 24 hours after incising which was supported by histological analysis and appearance of the neutrophil markers, S100a8 and S100a9. At this time, hyperalgesia was at a peak and overall transcriptional activity was most highly activated. At the 1-day timepoint, Nppb, coding for natriuretic peptide precursor B, was the most strongly upregulated gene and was localized by in situ hybridization to the epidermal keratinocytes at the margins of the incision. Nppb was basically unaffected in a peripheral inflammation model transcriptomic dataset. At the late phase of wound healing, five secreted, incision-specific peptidases, Mmp2, Aebp1, Mmp23, Adamts7, and Adamtsl1, showed increased expression, supporting the idea of a sustained tissue remodeling process. Transcripts that are specifically upregulated at each timepoint in the incision model may be potential candidates for either biomarkers or therapeutic targets for wound pain and wound healing. This study incorporates the examination of longitudinal temporal molecular responses, corresponding anatomical localization, and hyperalgesic behavioral alterations in the surgical incision model that together provide important and novel foundational knowledge to understand mechanisms of wound pain and wound healing.


Asunto(s)
Hiperalgesia/patología , Dolor Postoperatorio/patología , Placa Plantar/fisiología , RNA-Seq/métodos , Herida Quirúrgica/complicaciones , Transcriptoma , Cicatrización de Heridas , Animales , Conducta Animal , Edema/etiología , Edema/metabolismo , Edema/patología , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Masculino , Dolor Postoperatorio/etiología , Dolor Postoperatorio/metabolismo , Ratas , Ratas Sprague-Dawley
12.
Proc Natl Acad Sci U S A ; 115(51): E12024-E12033, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30514812

RESUMEN

The deadliest complication of Plasmodium falciparum infection is cerebral malaria (CM), with a case fatality rate of 15 to 25% in African children despite effective antimalarial chemotherapy. No adjunctive treatments are yet available for this devastating disease. We previously reported that the glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) rescued mice from experimental CM (ECM) when administered late in the infection, a time by which mice had already suffered blood-brain barrier (BBB) dysfunction, brain swelling, and hemorrhaging. Herein, we used longitudinal MR imaging to visualize brain pathology in ECM and the impact of a new DON prodrug, JHU-083, on disease progression in mice. We demonstrate in vivo the reversal of disease markers in symptomatic, infected mice following treatment, including the resolution of edema and BBB disruption, findings usually associated with a fatal outcome in children and adults with CM. Our results support the premise that JHU-083 is a potential adjunctive treatment that could rescue children and adults from fatal CM.


Asunto(s)
Diazooxonorleucina/antagonistas & inhibidores , Diazooxonorleucina/uso terapéutico , Glutamina/antagonistas & inhibidores , Imagen por Resonancia Magnética/métodos , Malaria Cerebral/tratamiento farmacológico , Malaria Cerebral/patología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/patología , Adulto , Animales , Antimaláricos/uso terapéutico , Biomarcadores , Barrera Hematoencefálica/patología , Encéfalo/parasitología , Encéfalo/patología , Edema Encefálico/diagnóstico por imagen , Edema Encefálico/patología , Niño , Diazooxonorleucina/administración & dosificación , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Malaria Cerebral/diagnóstico por imagen , Malaria Cerebral/parasitología , Malaria Falciparum/diagnóstico por imagen , Ratones , Ratones Endogámicos C57BL , Plasmodium falciparum/patogenicidad
13.
Am J Pathol ; 189(7): 1375-1385, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31230667

RESUMEN

Advances in antiretroviral therapy have resulted in significantly decreased HIV-related mortality. HIV-associated neurocognitive disorders, however, continue to be a major problem in infected patients. The neuropathology underlying HIV-associated neurocognitive disorders has not been well characterized, and evidence suggests different contributing mechanisms. One potential mechanism is the induction of oxidative stress. Using the HIV-1 transgenic (Tg) rat model of HIV, we found increased striatal NADPH oxidase-4 and neuronal nitric oxide synthase expression in the adult (7- to 9-month-old) Tg rat compared with control rats but not in the young (1-month-old) Tg rats. This was accompanied by increased 3-nitrotyrosine (3-NT) immunostaining in the adult Tg rats, which worsened significantly in the old Tg rats (18 to 20 months old). There was, however, no concurrent induction of the antioxidant systems because there was no change in the expression of the nuclear factor-erythroid 2-related factor 2 and its downstream targets (thioredoxin and glutathione antioxidant systems). Colocalization of 3-NT staining with neurofilament proteins and evidence of decreased tyrosine hydroxylase and dopamine transporter expression in the old rats support dopaminergic involvement. We conclude that the HIV-1 Tg rat brain shows evidence of nitrosative stress without appropriate oxidation-reduction adaptation, whereas 3-NT modification of striatal neurofilament proteins likely points to the ensuing dopaminergic neuronal loss and dysfunction in the aging HIV-1 Tg rat.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Dopamina , Infecciones por VIH , VIH-1 , Trastornos Neurocognitivos , Estrés Oxidativo/genética , Animales , Dopamina/genética , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , VIH-1/genética , VIH-1/metabolismo , Humanos , Trastornos Neurocognitivos/genética , Trastornos Neurocognitivos/metabolismo , Trastornos Neurocognitivos/patología , Ratas , Ratas Transgénicas , Tirosina/análogos & derivados , Tirosina/genética , Tirosina/metabolismo
14.
Ann Neurol ; 85(6): 934-942, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30847935

RESUMEN

Accumulating evidence corroborates the role of the "central vein sign" in the radiological diagnosis of multiple sclerosis (MS). Here, we report human magnetic resonance imaging (MRI) and corresponding pathological data that inflammation-dependent intracerebral remodeling of the vessel wall is directly associated with the prominence of intralesional veins on susceptibility-based MRI. In adult marmosets with experimental autoimmune encephalomyelitis, vessel-wall fibrosis was detected early in the demyelinating process, even in lesions <2 weeks old, though fibrosis was more evident after 6 weeks. Vascular remodeling consisted of both luminal enlargement and eccentric thickening of the perivascular space (fibrillar collagen type I deposition) and affected almost exclusively white matter, but not subpial cortical, lesions. The long-term effect of vessel remodeling in MS lesions is currently unknown, but it might potentially affect tissue repair. ANN NEUROL 2019;85:934-942.


Asunto(s)
Venas Cerebrales/química , Venas Cerebrales/diagnóstico por imagen , Enfermedades Desmielinizantes/diagnóstico por imagen , Colágenos Fibrilares/análisis , Colágenos Fibrilares/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Callithrix , Venas Cerebrales/metabolismo , Enfermedades Desmielinizantes/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad
15.
Cell Biol Int ; 44(10): 2163-2169, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32557962

RESUMEN

The clinical application of stem cells offers great promise as a potential avenue for therapeutic use in neurodegenerative diseases. However, cell loss after transplantation remains a major challenge, which currently plagues the field. On the basis of our previous findings that fibroblast growth factor 21 (FGF-21) protected neurons from glutamate excitotoxicity and that upregulation of FGF-21 in a rat model of ischemic stroke was associated with neuroprotection, we proposed that overexpression of FGF-21 protects bone marrow-derived mesenchymal stem cells (MSCs) from apoptosis. To test this hypothesis, we examined whether the detrimental effects of apoptosis can be mitigated by the transgenic overexpression of FGF-21 in MSCs. FGF-21 was transduced into MSCs by lentivirus and its overexpression was confirmed by quantitative polymerase chain reaction. Moreover, FGF-21 overexpression did not stimulate the expression of other FGF family members, suggesting it does not activate a positive feedback system. The effects of hydrogen peroxide (H2 O2 ), tumor necrosis factor-α (TNF-α), and staurosporine, known inducers of apoptosis, were evaluated in FGF-21 overexpressing MSCs and mCherry control MSCs. Caspases 3 and 7 activity was markedly and dose-dependently increased by all three stimuli in mCherry MSCs. FGF-21 overexpression robustly suppressed caspase activation induced by H2 O2 and TNF-α, but not staurosporine. Moreover, the assessment of apoptotic morphological changes confirmed the protective effects of FGF-21 overexpression. Taken together, these results provide compelling evidence that FGF-21 plays a crucial role in protecting MSCs from apoptosis induced by oxidative stress and inflammation and merits further investigation as a strategy for enhancing the therapeutic efficacy of stem cell-based therapies.


Asunto(s)
Apoptosis , Factores de Crecimiento de Fibroblastos/fisiología , Inflamación , Células Madre Mesenquimatosas/citología , Estrés Oxidativo , Animales , Células Cultivadas , Peróxido de Hidrógeno/farmacología , Ratones , Ratones Endogámicos C57BL , Estaurosporina/farmacología , Factor de Necrosis Tumoral alfa/farmacología
17.
J Neurosci Res ; 96(4): 487-500, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28463430

RESUMEN

Traumatic brain injuries (TBIs) pose a massive burden of disease and continue to be a leading cause of morbidity and mortality throughout the world. A major obstacle in developing effective treatments is the lack of comprehensive understanding of the underlying mechanisms that mediate tissue damage and recovery after TBI. As such, our work aims to highlight the development of a novel experimental platform capable of fully characterizing the underlying pathobiology that unfolds after TBI. This platform encompasses an empirically optimized multiplex immunohistochemistry staining and imaging system customized to screen for a myriad of biomarkers required to comprehensively evaluate the extent of neuroinflammation, neural tissue damage, and repair in response to TBI. Herein, we demonstrate that our multiplex biomarker screening platform is capable of evaluating changes in both the topographical location and functional states of resident and infiltrating cell types that play a role in neuropathology after controlled cortical impact injury to the brain in male Sprague-Dawley rats. Our results demonstrate that our multiplex biomarker screening platform lays the groundwork for the comprehensive characterization of changes that occur within the brain after TBI. Such work may ultimately lead to the understanding of the governing pathobiology of TBI, thereby fostering the development of novel therapeutic interventions tailored to produce optimal tissue protection, repair, and/or regeneration with minimal side effects, and may ultimately find utility in a wide variety of other neurological injuries, diseases, and disorders that share components of TBI pathobiology.


Asunto(s)
Lesiones Traumáticas del Encéfalo/fisiopatología , Inmunohistoquímica/métodos , Neuroimagen/métodos , Animales , Astrocitos/metabolismo , Astrocitos/patología , Biomarcadores/metabolismo , Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Masculino , Oligodendroglía/metabolismo , Oligodendroglía/patología , Ratas Sprague-Dawley , Enfermedades de la Lengua/metabolismo , Enfermedades de la Lengua/patología
19.
J Neurosci ; 35(4): 1530-8, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25632130

RESUMEN

We examined whether cells of the adaptive immune system retain the memory of psychosocial stress and thereby alter mood states and CNS function in the host. Lymphocytes from mice undergoing chronic social defeat stress or from unstressed control mice were isolated and adoptively transferred into naive lymphopenic Rag2(-/-) mice. Changes in affective behavior, hippocampal cell proliferation, microglial activation states, and blood cytokine levels were examined in reconstituted stress-naive mice. The mice receiving lymphocytes from defeated donors showed less anxiety, more social behavior, and increased hippocampal cell proliferation compared with those receiving no cells or cells from unstressed donors. Mice receiving stressed immune cells had reduced pro-inflammatory cytokine levels in the blood relative to the other groups, an effect opposite to the elevated donor pro-inflammatory cytokine profile. Furthermore, mice receiving stressed immune cells had microglia skewed toward an anti-inflammatory, neuroprotective M2-like phenotype, an effect opposite the stressed donors' M1-like pro-inflammatory profile. However, stress had no effect on lymphocyte surface marker profiles in both donor and recipient mice. The data suggest that chronic stress-induced changes in the adaptive immune system, contrary to conferring anxiety and depressive behavior, protect against the deleterious effects of stress. Improvement in affective behavior is potentially mediated by reduced peripheral pro-inflammatory cytokine load, protective microglial activity, and increased hippocampal cell proliferation. The data identify the peripheral adaptive immune system as putatively involved in the mechanisms underlying stress resilience and a potential basis for developing novel rapid-acting antidepressant therapies.


Asunto(s)
Traslado Adoptivo , Antidepresivos/uso terapéutico , Linfocitos/fisiología , Estrés Psicológico/inmunología , Estrés Psicológico/terapia , Animales , Antidepresivos/farmacología , Proliferación Celular/efectos de los fármacos , Enfermedad Crónica , Corticosterona/sangre , Citocinas/sangre , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Adaptación a la Oscuridad/efectos de los fármacos , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Psicológico/sangre , Estrés Psicológico/psicología , Orina/química
20.
J Neuroinflammation ; 13(1): 224, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27581371

RESUMEN

BACKGROUND: We are interested in the causal interactions between psychological stress and activity within different compartments of the immune system. Psychosocial stress has been reported to not only alter microglia morphology but also produce anxiety-like and depressive-like effects by triggering CNS infiltration of macrophages from the periphery. We sought to test these phenomena in a somewhat different but standardized model of chronic social defeat (SD) stress. METHODS: We used a paradigm of dyadic home pairing of dominant and subordinate mice that has been validated to induce powerful anxiety-like and depressive-like effects manifested by behavior assessed in social tasks. We administered the SD stress for 3 days (acute SD) or 14 days (chronic SD) and looked for monocyte entry into the brain by three independent means, including CD45 activation states assessed by flow cytometry and tracking fluorescently tagged peripheral cells from Ccr2 (wt/rfp) and Ubc (gfp/gfp) reporter mice. We further characterized the effects of SD stress on microglia using quantitative morphometric analysis, ex vivo phagocytosis assays, flow cytometry, and immunochemistry. RESULTS: We saw no evidence of stress-induced macrophage entry after acute or chronic defeat stress. In comparison, brain infiltration of peripheral cells did occur after endotoxin administration. Furthermore, mutant mice lacking infiltrating macrophages due to CCR2 knockout developed the same degree of chronic SD-induced depressive behavior as wildtype mice. We therefore focused more closely on the intrinsic immune cells, the microglia. Using Cx3cr1 (wt/gpf) microglial reporter mice, we saw by quantitative methods that microglial morphology was not altered by stress at either time point. However, chronic SD mice had elevated numbers of CD68(hi) microglia examined by flow cytometry. CD68 is a marker for phagocytic activity. Indeed, these cells ex vivo showed elevated phagocytosis, confirming the increased activation status of chronic SD microglia. Finally, acute SD but not chronic SD increased microglial proliferation, which occurred selectively in telencephalic stress-related brain areas. CONCLUSIONS: In the SD paradigm, changes in CNS-resident microglia numbers and activation states might represent the main immunological component of the psychosocial stress-induced depressive state.


Asunto(s)
Depresión/patología , Macrófagos/patología , Microglía/patología , Conducta Social , Estrés Psicológico/patología , Animales , Depresión/inmunología , Depresión/metabolismo , Femenino , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/inmunología , Microglía/metabolismo , Estrés Psicológico/metabolismo , Estrés Psicológico/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA