Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
iScience ; 27(7): 110353, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39055935

RESUMEN

The Aedes aegypti midgut is crucial for blood digestion, nutrition, reproduction, and pathogen interaction. Using single-cell RNA sequencing, we explored virus infection and transcriptomic changes at the cellular level. We identified 12 distinct cell clusters in the Ae. aegypti midgut post-Zika virus infection, including intestinal stem cells, enteroblasts, enteroendocrine cells (EE), and enterocytes (ECs). The virus was found mainly in specific subsets of ECs and EE. Infection altered transcriptional profiles related to metabolism, signaling, and immune responses. Functional studies highlighted three significantly differentially expressed genes in infected cells. Notably, silencing apolipophorin III reduced virus RNA copy number in the midgut, emphasizing the role of specific genes in viral infection. These findings enhance our understanding of mosquito midgut cell processes during Zika virus infection and suggest potential targets for vector control.

2.
Front Immunol ; 15: 1440407, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39072326

RESUMEN

Introduction: Bluetongue (BT), caused by bluetongue virus (BTV), is an important arthropod-borne livestock disease listed by the World Organization for Animal Health. Live-attenuated and inactivated vaccines have permitted to control BT but they do not simultaneously protect against the myriad of BTV serotypes. Recently, we identified the highly conserved BTV nonstructural protein NS1 and the N-terminal region of NS2 as antigens capable of conferring multiserotype protection against BTV. Methods: Here, we designed Modified Vaccinia Ankara (MVA) viral vectors that expressed BTV-4 proteins VP2 or VP7 along with NS1 and NS2-Nt as well as MVAs that expressed proteins VP2, VP7 or NS1 and NS2-Nt. Results: Immunization of IFNAR(-/-) mice with two doses of MVA-NS1-2A-NS2-Nt protected mice from BTV-4M infection by the induction of an antigen-specific T cell immune response. Despite rMVA expressing VP7 alone were not protective in the IFNAR(-/-) mouse model, inclusion of VP7 in the vaccine formulation amplified the cell-mediated response induced by NS1 and NS2-Nt. Expression of VP2 elicited protective non-cross-reactive neutralizing antibodies (nAbs) in immunized animals and improved the protection observed in the MVA-NS1-2A-NS2-Nt immunized mice when these three BTV antigens were co-expressed. Moreover, vaccines candidates co-expressing VP2 or VP7 along with NS1 and NS2-Nt provided multiserotype protection. We assessed protective efficacy of both vaccine candidates in sheep against virulent challenge with BTV-4M. Discussion: Immunization with MVA-VP7-NS1-2A-NS2-Nt partially dumped viral replication and clinical disease whereas administration of MVA-VP2-NS1-2A-NS2-Nt promoted a complete protection, preventing viraemia and the pathology produced by BTV infection.


Asunto(s)
Virus de la Lengua Azul , Lengua Azul , Proteínas de la Cápside , Vectores Genéticos , Receptor de Interferón alfa y beta , Virus Vaccinia , Proteínas no Estructurales Virales , Vacunas Virales , Animales , Virus de la Lengua Azul/inmunología , Virus de la Lengua Azul/genética , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/genética , Lengua Azul/prevención & control , Lengua Azul/inmunología , Lengua Azul/virología , Ratones , Vacunas Virales/inmunología , Vacunas Virales/genética , Virus Vaccinia/genética , Virus Vaccinia/inmunología , Receptor de Interferón alfa y beta/genética , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Ratones Noqueados , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Femenino
3.
Microbiol Spectr ; 12(3): e0249323, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38353566

RESUMEN

Bluetongue virus (BTV) is the causative agent of the important livestock disease bluetongue (BT), which is transmitted via Culicoides bites. BT causes severe economic losses associated with its considerable impact on health and trade of animals. By reverse genetics, we have designed and rescued reporter-expressing recombinant (r)BTV expressing NanoLuc luciferase (NLuc) or Venus fluorescent protein. To generate these viruses, we custom synthesized a modified viral segment 5 encoding NS1 protein with the reporter genes located downstream and linked by the Porcine teschovirus-1 (PTV-1) 2A autoproteolytic cleavage site. Therefore, fluorescent signal or luciferase activity is only detected after virus replication and expression of non-structural proteins. Fluorescence or luminescence signals were detected in cells infected with rBTV/Venus or rBTV/NLuc, respectively. Moreover, the marking of NS2 protein confirmed that reporter genes were only expressed in BTV-infected cells. Growth kinetics of rBTV/NLuc and rBTV/Venus in Vero cells showed replication rates similar to those of wild-type and rBTV. Infectivity studies of these recombinant viruses in IFNAR(-/-) mice showed a higher lethal dose for rBTV/NLuc and rBTV/Venus than for rBTV indicating that viruses expressing the reporter genes are attenuated in vivo. Interestingly, luciferase activity was detected in the plasma of viraemic mice infected with rBTV/NLuc. Furthermore, luciferase activity quantitatively correlated with RNAemia levels of infected mice throughout the infection. In addition, we have investigated the in vivo replication and dissemination of BTV in IFNAR (-/-) mice using BTV/NLuc and non-invasive in vivo imaging systems.IMPORTANCEThe use of replication-competent viruses that encode a traceable fluorescent or luciferase reporter protein has significantly contributed to the in vitro and in vivo study of viral infections and the development of novel therapeutic approaches. In this work, we have generated rBTV that express fluorescent or luminescence proteins to track BTV infection both in vitro and in vivo. Despite the availability of vaccines, BTV and other related orbivirus are still associated with a significant impact on animal health and have important economic consequences worldwide. Our studies may contribute to the advance in orbivirus research and pave the way for the rapid development of new treatments, including vaccines.


Asunto(s)
Virus de la Lengua Azul , Vacunas , Chlorocebus aethiops , Animales , Ratones , Virus de la Lengua Azul/genética , Genes Reporteros , Células Vero , Proteínas Virales/genética , Luciferasas/genética
4.
Sci Immunol ; 9(98): eadk9872, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121194

RESUMEN

The Aedes aegypti mosquito is a vector of many infectious agents, including flaviviruses such as Zika virus. Components of mosquito saliva have pleomorphic effects on the vertebrate host to enhance blood feeding, and these changes also create a favorable niche for pathogen replication and dissemination. Here, we demonstrate that human CD47, which is known to be involved in various immune processes, interacts with a 34-kilodalton mosquito salivary protein named Nest1. Nest1 is up-regulated in blood-fed female A. aegypti and facilitates Zika virus dissemination in human skin explants. Nest1 has a stronger affinity for CD47 than its natural ligand, signal regulatory protein α, competing for binding at the same interface. The interaction between Nest1 with CD47 suppresses phagocytosis by human macrophages and inhibits proinflammatory responses by white blood cells, thereby suppressing antiviral responses in the skin. This interaction elucidates how an arthropod protein alters the human response to promote arbovirus infectivity.


Asunto(s)
Aedes , Piel , Virus Zika , Aedes/inmunología , Aedes/virología , Animales , Humanos , Piel/inmunología , Piel/virología , Virus Zika/inmunología , Virus Zika/fisiología , Femenino , Proteínas de Insectos/inmunología , Infección por el Virus Zika/inmunología , Proteínas y Péptidos Salivales/inmunología , Mosquitos Vectores/inmunología , Mosquitos Vectores/virología , Antígeno CD47
5.
Front Epidemiol ; 2: 1002857, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38455331

RESUMEN

Dengue fever, caused by the dengue virus (DENV), is currently a threat to about half of the world's population. DENV is mainly transmitted to the vertebrate host through the bite of a female Aedes mosquito while taking a blood meal. During this process, salivary proteins are introduced into the host skin and blood to facilitate blood acquisition. These salivary proteins modulate both local (skin) and systemic immune responses. Several salivary proteins have been identified as immunogenic inducing the production of antibodies with some of those proteins also displaying immunomodulatory properties enhancing arboviral infections. IgG antibody responses against salivary gland extracts of a diverse number of mosquitoes, as well as antibody responses against the Ae. aegypti peptide, Nterm-34 kDa, have been suggested as biomarkers of human exposure to mosquito bites while antibodies against AgBR1 and NeSt1 proteins have been investigated for their potential protective effect against Zika virus (ZIKV) and West Nile virus infections. Thus, we were interested in evaluating whether IgG antibodies against AgBR1, NeSt1, Nterm-34 kDa peptide, and SGE were associated with DENV infections and clinical characteristics. For this, we tested samples from volunteers living in a dengue fever endemic area in Colombia in 2019 for the presence of IgG antibodies against those salivary proteins and peptides using an ELISA test. Results from this pilot study suggest an involvement of antibody responses against salivary proteins in dengue disease progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA