RESUMEN
Exosomes have previously been isolated from Chinese hamster ovary (CHO) cells and their anti-apoptotic properties reported. However, to further facilitate the study of CHO cell derived exosomes and allow their comparison across studies, it is necessary to characterise and define such exosomes using at least three criteria that can act as a reference for the generation of CHO cell produced exosomes. Here we report on the isolation of exosomes from CHO cells, an industrially relevant and widely used cell host for biopharmaceutical protein production, during the exponential and stationary phase of growth during batch culture using a Total Exosome Isolation (TEI) method. The resulting vesicles were characterized and visualized using a diverse range of techniques including Dynamic Light Scattering (DLS), Zeta potential, Electron Microscopy and immunoblotting, and their protein and RNA content determined. We also generated the lipid fingerprint of isolated exosomes using MALDI-ToF mass spectroscopy. We confirmed the presence of nano sized extracellular vesicles from CHO cells and their subsequent characterization revealed details of their size, homogeneity, surface charge, protein and RNA content. The lipid content of exosomes was also found to differ between exosomes isolated on different days of batch culture. This analysis provides a profile and characterisation of CHO cell exosomes to aid future studies on exosomes from CHO cells and improving the manufacturing of exosomes for biotherapeutic application.
Asunto(s)
Exosomas , Cricetinae , Animales , Cricetulus , Células CHO , Exosomas/química , ARN/análisis , Lípidos/análisisRESUMEN
Glycosylation can be a critical quality attribute in biologic manufacturing. In particular, it has implications on the half-life, immunogenicity, and pharmacokinetics of therapeutic monoclonal antibodies (mAbs), and must be closely monitored throughout drug development and manufacturing. To address this, advances have been made primarily in upstream processing, including mammalian cell line engineering, to yield more predictably glycosylated mAbs and the addition of media supplements during fermentation to manipulate the metabolic pathways involved in glycosylation. A more robust approach would be a conjoined upstream-downstream processing strategy. This could include implementing novel downstream technologies, such as the use of Fc γ-based affinity ligands for the separation of mAb glycovariants. This review highlights the importance of controlling therapeutic antibody glycosylation patterns, the challenges faced in terms of glycosylation during mAb biosimilar development, current efforts both upstream and downstream to control glycosylation and their limitations, and the need for research in the downstream space to establish holistic and consistent manufacturing processes for the production of antibody therapies.
Asunto(s)
Antineoplásicos Inmunológicos , Biosimilares Farmacéuticos , Animales , Anticuerpos Monoclonales/metabolismo , Glicosilación , Mamíferos/metabolismoRESUMEN
Host cell protein content during bioprocessing of biotherapeutic proteins generated from cultured Chinese hamster ovary (CHO) cells is typically measured using immunological and gel-based methods. Estimation of HCP concentration is usually undertaken using Enzyme-Linked ImmunoSorbent Assays (ELISA), while estimation of HCP clearance/presence can be achieved by comparing 2D-PAGE images of samples and by undertaking western blotting of 2D-PAGE analyzed samples. Here, we describe the analyses of HCP content using these methodologies.