Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38779849

RESUMEN

Nephropathia epidemica (NE), caused by Puumala (PUUV) orthohantavirus, is endemic in the Republic of Tatarstan (RT). There are limited options for NE prevention in RT. Currently, available vaccines are made using Haantan (HNTV) orthohantavirus antigens. In this study, the efficacy of microvesicles (MVs) loaded with PUUV antigens to induce the humoral immune response in small mammals was analyzed. Additionally, the cross-reactivity of serum from immunized small mammals and NE patients with HNTV, Dobrava, and Andes orthohantaviruses was investigated using nucleocapsid (N) protein peptide libraries. Finally, the selected peptides were analyzed for allergenicity, their ability to induce an autoimmune response, and their interaction with Class II HLA. Several N protein peptides were found to be cross-reactive with serum from MVs immunized small mammals. These cross-reactive epitopes were located in oligomerization perinuclear targeting and Daxx-interacting domains. Most cross-reactive peptides lack allergenic and autoimmune reactivity. Molecular docking revealed two cross-reacting peptides, N6 and N19, to have good binding with three Class II HLA alleles. These peptides could be candidates for developing vaccines and therapeutics for NE.

2.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37373331

RESUMEN

The severity of COVID-19 is a result of the complex interplay between various branches of the immune system. However, our understanding of the role of neutralizing antibodies and the activation of cellular immune response in COVID-19 pathogenesis remains limited. In this study, we investigated neutralizing antibodies in patients with mild, moderate, and severe COVID-19, analyzing their cross-reactivity with the Wuhan and Omicron variants. We also assessed the activation of the immune response by measuring serum cytokines in patients with mild, moderate, and severe COVID-19. Our findings suggest the early activation of neutralizing antibodies in moderate COVID-19 compared to mild cases. We also observed a strong correlation between the cross-reactivity of neutralizing antibodies to the Omicron and Wuhan variants and the severity of the disease. In addition, we found that Th1 lymphocyte activation was present in mild and moderate cases, while inflammasomes and Th17 lymphocytes were activated in severe COVID-19. In conclusion, our data indicate that the early activation of neutralizing antibodies is evident in moderate COVID-19, and there is a strong correlation between the cross-reactivity of neutralizing antibodies and the severity of the disease. Our findings suggest that the Th1 immune response may play a protective role, while inflammasome and Th17 activation may be involved in severe COVID-19.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Humanos , Tatarstán , SARS-CoV-2 , Federación de Rusia , Inflamasomas , Anticuerpos Antivirales
3.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36834957

RESUMEN

Multiple sclerosis (MS) is a debilitating chronic disease of unknown etiology. There are limited treatment options due to an incomplete understanding of disease pathology. The disease is shown to have seasonal exacerbation of clinical symptoms. The mechanisms of such seasonal worsening of symptoms remains unknown. In this study, we applied targeted metabolomics analysis of serum samples using LC-MC/MC to determine seasonal changes in metabolites throughout the four seasons. We also analyzed seasonal serum cytokine alterations in patients with relapsed MS. For the first time, we can demonstrate seasonal changes in various metabolites in MS compared to the control. More metabolites were affected in MS in the fall season followed by spring, while summer MS was characterized by the smallest number of affected metabolites. Ceramides were activated in all seasons, suggesting their central role in the disease pathogenesis. Substantial changes in glucose metabolite levels were found in MS, indicating a potential shift to glycolysis. An increased serum level of quinolinic acid was demonstrated in winter MS. Histidine pathways were affected, suggesting their role in relapse of MS in the spring and fall. We also found that spring and fall seasons had a higher number of overlapping metabolites affected in MS. This could be explained by patients having a relapse of symptoms during these two seasons.


Asunto(s)
Esclerosis Múltiple , Humanos , Estaciones del Año , Citocinas , Enfermedad Crónica , Recurrencia
4.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175705

RESUMEN

Crohn's disease (CD) is a chronic relapsing inflammatory bowel disease of unknown etiology. Genetic predisposition and dysbiotic gut microbiota are important factors in the pathogenesis of CD. In this study, we analyzed the taxonomic composition of the gut microbiota and genotypes of 24 single nucleotide polymorphisms (SNP) associated with the risk of CD. The studied cohorts included 96 CD patients and 24 healthy volunteers from Russia. Statistically significant differences were found in the allele frequencies for 8 SNPs and taxonomic composition of the gut microbiota in CD patients compared with controls. In addition, two types of gut microbiota communities were identified in CD patients. The main distinguishing driver of bacterial families for the first community type are Bacteroidaceae and unclassified members of the Clostridiales order, and the second type is characterized by increased abundance of Streptococcaceae and Enterobacteriaceae. Differences in the allele frequencies of the rs9858542 (BSN), rs3816769 (STAT3), and rs1793004 (NELL1) were also found between groups of CD patients with different types of microbiota communities. These findings confirm the complex multifactorial nature of CD.


Asunto(s)
Enfermedad de Crohn , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Humanos , Enfermedad de Crohn/patología , Polimorfismo de Nucleótido Simple , Microbioma Gastrointestinal/genética , Intestinos/patología
5.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37108178

RESUMEN

Nephropathia epidemica (NE), caused by the hantavirus infection, is endemic in Tatarstan Russia. The majority of patients are adults, with infection rarely diagnosed in children. This limited number of pediatric NE cases means there is an inadequate understanding of disease pathogenesis in this age category. Here, we have analyzed clinical and laboratory data in adults and children with NE to establish whether and how the disease severity differs between the two age groups. Serum cytokines were analyzed in samples collected from 11 children and 129 adult NE patients during an outbreak in 2019. A kidney toxicity panel was also used to analyze urine samples from these patients. Additionally, serum and urine samples were analyzed from 11 control children and 26 control adults. Analysis of clinical and laboratory data revealed that NE was milder in children than in adults. A variation in serum cytokine activation could explain the differences in clinical presentation. Cytokines associated with activation of Th1 lymphocytes were prominent in adults, while they were obscured in sera from pediatric NE patients. In addition, a prolonged activation of kidney injury markers was found in adults with NE, whilst only a short-lasting activation of these markers was observed in children with NE. These findings support previous observations of age differences in NE severity, which should be considered when diagnosing the disease in children.


Asunto(s)
Nefropatía de los Balcanes , Infecciones por Hantavirus , Fiebre Hemorrágica con Síndrome Renal , Humanos , Adulto , Niño , Fiebre Hemorrágica con Síndrome Renal/diagnóstico , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Citocinas , Infecciones por Hantavirus/diagnóstico , Riñón
6.
Arch Microbiol ; 204(6): 336, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35587838

RESUMEN

Genomic and metabolomic studies of endolithic bacteria are essential for understanding their adaptations to extreme conditions of the rock environment and their contributions to mineralization and weathering processes. The endoliths of arid serpentine rocks are exposed to different environmental stresses, including desiccation and re-hydration, temperature fluctuations, oligotrophy, and high concentrations of heavy metals. Bacteria of the genus Rhodococcus commonly inhabit endolithic environments. Here, we describe genomic and metabolomic analyses of the non-pathogenic wild-type Rhodococcus fascians strain S11, isolated from weathered serpentine rock at the arid Khalilovsky massif, Russia. We found that strain S11 lacks the virulence plasmid that functions in the phytopathogenecity of some R. fascians strains. Phenotypic profiling revealed a high pH tolerance, phytase activity and siderophore production. A widely untargeted metabolome analysis performed using an Orbitrap LC-MS/MS method demonstrated the presence of chrysobactin-type siderophores in the culture medium of strain S11. The natural variation of secondary metabolites produced by strain S11 might provide a practical basis for revealing antibacterial, fungicide or insecticidal activities. Finally, plant infection and plant growth stimulation studies showed no observable effect of exposure strain S11 bacteria on the aerial and root parts of Arabidopsis thaliana plants. Based on our findings, R. fascians strain S11 might be promising tool for investigations of organo-mineral interactions, heavy metal bioremediation, and mechanisms of bacterial mediated weathering of plant-free serpentine rock to soil.


Asunto(s)
Arabidopsis , Rhodococcus , Arabidopsis/microbiología , Cromatografía Liquida , Genómica , Plantas/microbiología , Rhodococcus/genética , Rhodococcus/metabolismo , Sideróforos/metabolismo , Espectrometría de Masas en Tándem
7.
Appl Microbiol Biotechnol ; 106(8): 3153-3171, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35396956

RESUMEN

The Tsukamurella tyrosinosolvens PS2 strain was isolated from hydrocarbons-contaminated petrochemical sludge as a long chain alkane-utilizing bacteria. Complete genome analysis showed the presence of two alkane oxidation systems: alkane 1-monooxygenase (alkB) and cytochrome P450 monooxygenase (P450) genes with established high homology to the well-known alkane-degrading actinobacteria. According to the comparative genome analysis, both systems have a wide distribution among environmental and clinical isolates of the genus Tsukamurella and other members of Actinobacteria. We compared the expression of different proteins during the growth of Tsukamurella on sucrose and on hexadecane. Both alkane monooxygenases were upregulated on hexadecane: AlkB-up to 2.5 times, P450-up to 276 times. All proteins of the hexadecane oxidation pathway to acetyl-CoA were also upregulated. Accompanying proteins for alkane degradation involved in biosurfactant synthesis and transport of organic and inorganic molecules were increased. The change in the carbon source affected the pathways for the regulation of translation and transcription. The proteomic profile showed that hexadecane is an adverse factor causing activation of general and universal stress proteins as well as shock and resistance proteins. Differently expressed proteins of Tsukamurella tyrosinosolvens PS2 shed light on the alkane degradation in other members of Actinobacteria class. KEY POINTS: • alkB and P450 systems have a wide distribution among the genus Tsukamurella. • alkB and P450 systems have coexpression with the predominant role of P450 protein. • Hexadecane causes significant changes in bacterial proteome.


Asunto(s)
Actinomycetales , Proteómica , Actinobacteria , Actinomycetales/genética , Actinomycetales/metabolismo , Alcanos/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Citocromo P-450 CYP4A/genética , Citocromo P-450 CYP4A/metabolismo
8.
Arch Microbiol ; 203(2): 855-860, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33025059

RESUMEN

The success of members of the genus Rhodococcus in colonizing arid rocky environments is owed in part to desiccation tolerance and an ability to extract iron through the secretion and uptake of siderophores. Here, we report a comprehensive genomic and taxonomic analysis of Rhodococcus qingshengii strain S10 isolated from eathered serpentine rock at the arid Khalilovsky massif, Russia. Sequence comparisons of whole genomes and of selected marker genes clearly showed strain S10 to belong to the R. qingshengii species. Four prophage sequences within the R. qingshengii S10 genome were identified, one of which encodes for a putative siderophore-interacting protein. Among the ten non-ribosomal peptides synthase (NRPS) clusters identified in the strain S10 genome, two show high homology to those responsible for siderophore synthesis. Phenotypic analyses demonstrated that R. qingshengii S10 secretes siderophores and possesses adaptive features (tolerance of up to 8% NaCl and pH 9) that should enable survival in its native habitat within dry serpentine rock.


Asunto(s)
Rhodococcus/enzimología , Rhodococcus/genética , Sideróforos/metabolismo , Clima Desértico , Ambiente , Genoma Bacteriano/genética , Hierro/metabolismo , Péptido Sintasas/genética , Profagos/genética , Federación de Rusia
9.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681885

RESUMEN

SputnikV is a vaccine against SARS-CoV-2 developed by the Gamaleya National Research Centre for Epidemiology and Microbiology. The vaccine has been shown to induce both humoral and cellular immune responses, yet the mechanisms remain largely unknown. Forty SputnikV vaccinated individuals were included in this study which aimed to demonstrate the location of immunogenic domains of the SARS-CoV-2 S protein using an overlapping peptide library. Additionally, cytokines in the serum of vaccinated and convalescent COVID-19 patients were analyzed. We have found antibodies from both vaccinated and convalescent sera bind to immunogenic regions located in multiple domains of SARS-CoV-2 S protein, including Receptor Binding Domain (RBD), N-terminal Domain (NTD), Fusion Protein (FP) and Heptad Repeats (HRs). Interestingly, many peptides were recognized by immunized and convalescent serum antibodies and correspond to conserved regions in circulating variants of SARS-CoV-2. This breadth of reactivity was still evident 90 days after the first dose of the vaccine, showing that the vaccine has induced a prolonged response. As evidenced by the activation of T cells, cellular immunity strongly suggests the high potency of the SputnikV vaccine against SARS-CoV-2 infection.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Inmunidad Celular , Inmunidad Humoral , Adulto , Secuencia de Aminoácidos , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Citocinas/metabolismo , Femenino , Humanos , Masculino , Péptidos/química , Péptidos/inmunología , Análisis de Componente Principal , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Vacunación
10.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167434

RESUMEN

Unpredictable influenza pandemics, annual epidemics, and sporadic poultry-to-human avian influenza virus infections with high morbidity and mortality rates dictate a need to develop new antiviral approaches. Targeting cellular pathways and processes is a promising antiviral strategy shown to be effective regardless of viral subtypes or viral evolution of drug-resistant variants. Proteomics-based searches provide a tool to reveal the druggable stages of the virus life cycle and to understand the putative antiviral mode of action of the drug(s). Ribonucleases (RNases) of different origins not only demonstrate antiviral effects that are mediated by the direct RNase action on viral and cellular RNAs but can also exert their impact by signal transduction modulation. To our knowledge, studies of the RNase-affected cell proteome have not yet been performed. To reveal cellular targets and explain the mechanisms underlying the antiviral effect employed by the small extra-cellular ribonuclease of Bacillus pumilus (binase) both in vitro and in vivo, qualitative shotgun and quantitative targeted proteomic analyses of the influenza A virus (IAV) H1N1pdm09-infected A549 cells upon binase treatment were performed. We compared proteomes of mock-treated, binase-treated, virus-infected, and virus-infected binase-treated cells to determine the proteins affected by IAV and/or binase. In general, IAV demonstrated a downregulating strategy towards cellular proteins, while binase had an upregulating effect. With the help of bioinformatics approaches, coregulated cellular protein sets were defined and assigned to their biological function; a possible interconnection with the progression of viral infection was conferred. Most of the proteins downregulated by IAV (e.g., AKR1B1, AKR1C1, CCL5, PFN1, RAN, S100A4, etc.) belong to the processes of cellular metabolism, response to stimulus, biological regulation, and cellular localization. Upregulated proteins upon the binase treatment (e.g., AKR1B10, CAP1, HNRNPA2B1, PFN1, PPIA, YWHAB, etc.) are united by the processes of biological regulation, cellular localization, and immune and metabolic processes. The antiviral activity of binase against IAV was expressed by the inversion of virus-induced proteomic changes, resulting in the inhibition of virus-associated processes, including nuclear ribonucleoprotein export (NCL, NPM1, Nup205, and Bax proteins involved) and cytoskeleton remodeling (RDX, PFN1, and TUBB) induced by IAV at the middle stage of single-cycle infection in A549 cells. Modulation of the immune response could be involved as well. Overall, it seems possible that binase exerts its antiviral effects in multiple ways.


Asunto(s)
Endorribonucleasas/farmacología , Virus de la Influenza A/efectos de los fármacos , Células A549 , Animales , Antivirales/metabolismo , Antivirales/farmacología , Bacillus pumilus/enzimología , Bacillus pumilus/metabolismo , Línea Celular , Endorribonucleasas/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Gripe Humana/virología , Nucleofosmina , Proteoma , Proteómica/métodos , Ribonucleasas/metabolismo , Replicación Viral/efectos de los fármacos
11.
Int J Cancer ; 144(3): 569-581, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30252132

RESUMEN

Expression of the epidermal growth factor ligands amphiregulin (AREG) and epiregulin (EREG) is positively correlated with a response to EGFR-targeted therapies in colorectal cancer. Gene-body methylation sites, which show a strong inverse correlation with AREG and EREG gene expression, were identified in cell lines using targeted 454 FLX-bisulfite sequencing and SIRPH analyses for AREG/EREG promoters and intragenic CpGs. Upon treatment of colorectal cancer cells with 5-aza-2'-desoxycytidine, methylation decreases at specific intragenic CpGs accompanied by upregulation of AREG and EREG gene expression. The same AREG gene-body methylation was also found in human colorectal cancer samples and is independent of KRAS and NRAS mutations. Methylation is specifically decreased in the tumor epithelial compartment as compared to stromal tissue and normal epithelium. Investigation of a promoter/enhancer function of the AREG exon 2 region revealed a potential promoter function in reverse orientation. Retrospective comparison of the predictive power of AREG gene-body methylation versus AREG gene expression using samples from colorectal cancer patients treated with anti-EGFR inhibitors with complete clinical follow-up revealed that AREG expression is superior to AREG gene methylation. AREG and EREG genes undergo a complex regulation involving both intragenic methylation and promoter-dependent control.


Asunto(s)
Anfirregulina/genética , Neoplasias Colorrectales/genética , Epirregulina/genética , Anfirregulina/biosíntesis , Células CACO-2 , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Metilación de ADN , Epigénesis Genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expresión Génica , Células HCT116 , Humanos , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Estudios Retrospectivos , Células del Estroma/metabolismo , Células del Estroma/patología
12.
J Pept Sci ; 20(11): 850-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25044757

RESUMEN

Accumulation of the COMMD1 protein as a druggable pharmacology event to target cancer cells has not been evaluated so far in cancer animal models. We have previously demonstrated that a second-generation peptide, with cell-penetrating capacity, termed CIGB-552, was able to induce apoptosis mediated by stabilization of COMMD1. Here, we explore the antitumor effect by subcutaneous administration of CIGB-552 in a therapeutic schedule. Outstandingly, a significant delay of tumor growth was observed at 0.2 and 0.7 mg/kg (p < 0.01) or 1.4 mg/kg (p < 0.001) after CIGB-552 administration in both syngeneic murine tumors and patient-derived xenograft models. Furthermore, we evidenced that (131)I-CIGB-552 peptide was actually accumulated in the tumors after administration by subcutaneous route. A typical serine-proteases degradation pattern for CIGB-552 in BALB/c mice serum was identified. Further, biological characterization of the main metabolites of the peptide CIGB-552 suggests that the cell-penetrating capacity plays an important role in the cytotoxic activity. This report is the first in describing the antitumor effect induced by systemic administration of a peptide that targets COMMD1 for stabilization. Moreover, our data reinforce the perspectives of CIGB-552 for cancer targeted therapy.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/farmacocinética , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proteínas de Artrópodos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/química , Femenino , Células HT29 , Humanos , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Neoplasias Experimentales/patología , Estabilidad Proteica/efectos de los fármacos , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Microorganisms ; 12(2)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38399723

RESUMEN

H. pylori eradication therapy leads to significant changes in the gut microbiome, including influence on the gut microbiome's functional potential. Probiotics are one of the most studied potential methods for reducing the microbiota-related consequences of antibiotics. However, the beneficial effects of probiotics are still under discussion. In addition, there are some concerns about the safety of probiotics, emphasizing the need for research of other therapeutic interventions. The aim of our study was to evaluate the influence of butyric acid+inulin supplements on gut microbiota changes (the gut microbiota composition, abundance of metabolic pathways, and gut resistome) caused by H. pylori eradication therapy. MATERIALS AND METHODS: Twenty two H. pylori-positive patients, aged 19 to 64 years, were enrolled in the study and randomized into two treatment groups, as follows: (1) ECAB-14 (n = 11), with esomeprazole 20 mg, clarithromycin 500 mg, amoxicillin 1000 mg, and bismuthate tripotassium dicitrate 240 mg, twice daily, per os, for 14 days, and (2), ECAB-Z-14 (n = 11), with esomeprazole 20 mg, clarithromycin 500 mg, amoxicillin 1000 mg, and bismuthate tripotassium dicitrate 240 mg, twice daily, along with butyric acid+inulin (Zacofalk), two tablets daily, each containing 250 mg of butyric acid, and 250 mg of inulin, per os, for 14 days. Fecal samples were collected from each subject prior to eradication therapy (time point I), after the end of eradication therapy (time point II), and a month after the end of eradication therapy (time point III). The total DNA from the fecal samples was isolated for whole genome sequencing using the Illumina NextSeq 500 platform. Qualitative and quantitative changes in gut microbiota were assessed, including alpha and beta diversity, functional potential and antibiotic resistance gene profiling. RESULTS: Gut microbiota alpha diversity significantly decreased compared with the baseline immediately after eradication therapy in both treatment groups (ECAB-14 and ECAB-Z-14). This diversity reached its baseline in the ECAB-Z-14 treatment group a month after the end of eradication therapy. However, in the ECAB-14 treatment arm, a reduction in the Shannon index was observed up to a month after the end of H. pylori eradication therapy. Fewer alterations in the gut microbiota functional potential were observed in the ECAB-Z-14 treatment group. The abundance of genes responsible for the metabolic pathway associated with butyrate production decreased only in the ECAB-14 treatment group. The prevalence of antibiotic-resistant genes in the gut microbiota increased significantly in both treatment groups by the end of treatment. However, more severe alterations were noted in the ECAB-14 treatment group. CONCLUSIONS: H. pylori eradication therapy leads to taxonomic changes, a reduction in the alpha diversity index, and alterations in the functional potential of the gut microbiota and gut resistome. Taking butyric acid+inulin supplements during H. pylori eradication therapy could help maintain the gut microbiota in its initial state and facilitate its recovery after H. pylori eradication.

14.
Microorganisms ; 12(8)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39203554

RESUMEN

While the gut microbiome has been intensively investigated for more than twenty years already, its role in various disorders remains to be unraveled. At the same time, questions about what changes in the gut microbiota can be considered as normal or pathological and whether communities are able to recover after exposure to negative factors (diseases, medications, environmental factors) are still unclear. Here, we describe changes in the gut microbiota composition and the content of short-chain fatty acids in adult healthy volunteers (n = 15) over a 24 month-period. Intraindividual variability in gut microbial composition was 40%, whereas the short chain fatty acids profile remained relatively stable (2-year variability 20%, inter-individual 26%). The changes tend to accumulate over time. Nevertheless, both short-term and long-term changes in the gut microbiome composition were significantly smaller within individuals than interindividual differences (two-year interindividual variability was 75%). Seasonal changes in gut microbiota were found more often in autumn and spring involving the content of minor representatives (less than 1.5% of the community in average) in the phyla Actinobacteriota, Firmicutes and Proteobacteria.

15.
Viruses ; 16(2)2024 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-38400081

RESUMEN

Nephropathis epidemica (NE), a mild form of hemorrhagic fever with renal syndrome (HFRS), is an acute zoonotic disease endemic in the Republic of Tatarstan. This study aimed to assess the impact of rosuvastatin on the clinical and laboratory results of NE. A total of 61 NE patients and 30 controls were included in this study; 22 NE patients and 7 controls received a daily dose of rosuvastatin (10 mg) for ten consecutive days. Serum samples were collected on days 1, 5, and 10 after admission to the hospital. These samples were analyzed to determine the levels of lipids, cytokines, and kidney toxicity markers. Our findings indicate that rosuvastatin reduced the duration of the second wave of fever and alleviated back pain and headache symptoms. Additionally, low-density lipoprotein cholesterol (LDL-C) serum levels were significantly decreased on days 5 and 10 upon rosuvastatin treatment. Furthermore, rosuvastatin decreased the levels of cytokines in the serum, particularly proinflammatory cytokines IL-1ß and IL-8. NE patients had significantly altered levels of the kidney toxicity markers albumin and osteopontin. The data from our study provide evidence supporting the therapeutic potential of rosuvastatin in NE cases.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Humanos , Fiebre Hemorrágica con Síndrome Renal/diagnóstico , Rosuvastatina Cálcica/uso terapéutico , Citocinas , Osteopontina , LDL-Colesterol
16.
Sci Rep ; 14(1): 5676, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453942

RESUMEN

Actinobacteria are one of the predominant groups that successfully colonize and survive in various aquatic, terrestrial and rhizhospheric ecosystems. Among actinobacteria, Nocardia is one of the most important agricultural and industrial bacteria. Screening and isolation of Nocardia related bacteria from extreme habitats such as endolithic environments are beneficial for practical applications in agricultural and environmental biotechnology. In this work, bioinformatics analysis revealed that a novel strain Nocardia mangyaensis NH1 has the capacity to produce structurally varied bioactive compounds, which encoded by non-ribosomal peptide synthases (NRPS), polyketide synthase (PKS), and post-translationally modified peptides (RiPPs). Among NRPS, five gene clusters have a sequence homology with clusters encoding for siderophore synthesis. We also show that N. mangyaensis NH1 accumulates both catechol- and hydroxamate-type siderophores simultaneously under iron-deficient conditions. Untargeted LC-MS/MS analysis revealed a variety of metabolites, including siderophores, lipopeptides, cyclic peptides, and indole-3-acetic acid (IAA) in the culture medium of N. mangyaensis NH1 grown under iron deficiency. We demonstrate that four CAS (chrome azurol S)-positive fractions display variable affinity to metals, with a high Fe3+ chelating capability. Additionally, three of these fractions exhibit antioxidant activity. A combination of iron scavenging metabolites produced by N. mangyaensis NH1 showed antifungal activity against several plant pathogenic fungi. We have shown that the pure culture of N. mangyaensis NH1 and its metabolites have no adverse impact on Arabidopsis seedlings. The ability of N. mangyaensis NH1 to produce siderophores with antifungal, metal-chelating, and antioxidant properties, when supplemented with phytohormones, has the potential to improve the release of macro- and micronutrients, increase soil fertility, promote plant growth and development, and enable the production of biofertilizers across diverse soil systems.


Asunto(s)
Actinobacteria , Nocardia , Nocardia/genética , Nocardia/metabolismo , Sideróforos/metabolismo , Ecosistema , Antifúngicos/farmacología , Cromatografía Liquida , Espectrometría de Masas en Tándem , Actinobacteria/metabolismo , Hierro/metabolismo , Bacterias/metabolismo , Genómica , Metaboloma , Suelo
17.
Biomedicines ; 11(7)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37509661

RESUMEN

The biosafety of gene therapy remains a crucial issue for both the direct and cell-mediated delivery of recombinant cDNA encoding biologically active molecules for the pathogenetic correction of congenital or acquired disorders. The diversity of vector systems and cell carriers for the delivery of therapeutic genes revealed the difficulty of developing and implementing a safe and effective drug containing artificial genetic material for the treatment of human diseases in practical medicine. Therefore, in this study we assessed changes in the transcriptome and secretome of umbilical cord blood mononuclear cells (UCB-MCs) genetically modified using adenoviral vector (Ad5) carrying cDNA encoding human vascular endothelial growth factor (VEGF165) or reporter green fluorescent protein (GFP). A preliminary analysis of UCB-MCs transduced with Ad5-VEGF165 and Ad5-GFP with MOI of 10 showed efficient transgene expression in gene-modified UCB-MCs at mRNA and protein levels. The whole transcriptome sequencing of native UCB-MCs, UCB-MC+Ad5-VEGF165, and UCB-MC+Ad5-GFP demonstrated individual sample variability rather than the effect of Ad5 or the expression of recombinant vegf165 on UCB-MC transcriptomes. A multiplex secretome analysis indicated that neither the transduction of UCB-MCs with Ad5-GFP nor with Ad5-VEGF165 affects the secretion of the studied cytokines, chemokines, and growth factors by gene-modified cells. Here, we show that UCB-MCs transduced with Ad5 carrying cDNA encoding human VEGF165 efficiently express transgenes and preserve transcriptome and secretome patterns. This data demonstrates the biosafety of using UCB-MCs as cell carriers of therapeutic genes.

18.
Front Immunol ; 13: 1010605, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451826

RESUMEN

Multiple sclerosis (MS) is a heterogeneous disease where herpesvirus infection and genetic predisposition are identified as the most consistent risk factors. Serum and blood samples were collected from 151 MS and 70 controls and used to analyze circulating antibodies for, and DNA of, Epstein Barr virus (EBV), human cytomegalovirus (HCMV), human herpes virus 6 (HHV6), and varicella zoster virus (VZV). The frequency of selected single nucleotide polymorphisms (SNPs) in MS and controls were studied. Herpesvirus DNA in blood samples were analyzed using qPCR. Anti-herpesvirus antibodies were detected by ELISA. SNPs were analyzed by the allele-specific PCR. For statistical analysis, Fisher exact test, odds ratio and Kruskall-Wallis test were used; p<0.05 values were considered as significant. We have found an association between circulating anti-HHV6 antibodies and MS diagnosis. We also confirmed higher frequency of A and C alleles in rs2300747 and rs12044852 of CD58 gene and G allele in rs929230 of CD6 gene in MS as compared to controls. Fatigue symptom was linked to AC and AA genotype in rs12044852 of CD58 gene. An interesting observation was finding higher frequency of GG genotype in rs12722489 of IL2RA and T allele in rs1535045 of CD40 genes in patient having anti-HHV6 antibodies. A link was found between having anti-VZV antibodies in MS and CC genotype in rs1883832 of CD40 gene.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 6 , Esclerosis Múltiple , Humanos , Polimorfismo de Nucleótido Simple , Esclerosis Múltiple/genética , Infecciones por Virus de Epstein-Barr/epidemiología , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Factores de Riesgo , Federación de Rusia/epidemiología , Anticuerpos Antivirales
19.
Biomed Res Int ; 2022: 4685288, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35059462

RESUMEN

Nephropathia epidemica (NE) is a zoonotic disease caused by hantaviruses transmitted from rodents, endemic in the Republic of Tatarstan, Russia. The disease presents clinically with mild, moderate, and severe forms, and time-dependent febrile, oliguric, and polyuric stages of the disease are also recognized. The patient's cytokine responses have been suggested to play a central role in disease pathogenesis; however, little is known about the different patterns of cytokine expression in NE in cohorts of different ages and sexes. Serum samples and clinical records were collected from 139 patients and 57 controls (healthy donors) and were used to analyze 48 analytes with the Bio-Plex multiplex magnetic bead-based antibody detection kits. Principal component analysis of 137 patient and 55 controls (for which there was full data) identified two components that individually accounted for >15% of the total variance in results and together for 38% of the total variance. PC1 represented a proinflammatory TH17/TH2 cell antiviral cytokine profile and PC2 a more antiviral cytokine profile with patients tending to display one or the other of these. Severity of disease and stage of illness did not show any correlation with PC1 profiles; however, significant differences were seen in patients with high PC1 profiles vs. lower for a number of individual clinical parameters: High PC1 patients showed a reduced number of febrile days, but higher maximum urine output, higher creatinine levels, and lower platelet levels. Overall, the results of this study point towards a stronger proinflammatory profile occurring in younger NE patients, this being associated with markers of acute kidney injury and low levels of high-density cholesterol. This is consistent with previous work indicating that the pathology of NE is immune driven, with an inflammatory immune response being associated with disease and that this immune response is more extreme in younger patients.


Asunto(s)
Lesión Renal Aguda/sangre , Citocinas/sangre , Fiebre Hemorrágica con Síndrome Renal/sangre , Lesión Renal Aguda/inmunología , Adulto , Biomarcadores/sangre , Citocinas/inmunología , Femenino , Fiebre Hemorrágica con Síndrome Renal/inmunología , Humanos , Masculino , Persona de Mediana Edad , Tatarstán , Células Th17/inmunología , Células Th17/metabolismo , Células Th2/inmunología , Células Th2/metabolismo
20.
Front Microbiol ; 13: 842232, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35509311

RESUMEN

Identifying immunogenic targets of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is critical to advance diagnostic and disease control strategies. We analyzed humoral (ELISA) and T-cell (ELISpot) immune responses to spike (S) and nucleocapsid (N) SARS-CoV-2 proteins as well as to human endemic coronavirus (eCoV) peptides in serum from convalescent coronavirus disease 2019 (COVID-19) patients from Tatarstan, Russia. We identified multiple SARS-CoV-2 peptides that were reactive with serum antibodies and T cells from convalescent COVID-19. In addition, age and gender associated differences in the reactivity to S and N protein peptides were identified. Moreover, several SARS-CoV-2 peptides tested negatively correlated with disease severity and lung damage. Cross-reactivity to eCoV peptides was analyzed and found to be lower in COVID-19 compared to controls. In this study, we demonstrate the changing pattern of immunogenic peptide reactivity in COVID-19 serum based on age, gender and previous exposure to eCoVs. These data highlight how humoral immune responses and cytotoxic T cell responses to some of these peptides could contribute to SARS-CoV-2 pathogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA