Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Entropy (Basel) ; 25(4)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37190482

RESUMEN

Noisy Intermediate-Scale Quantum (NISQ) systems and associated programming interfaces make it possible to explore and investigate the design and development of quantum computing techniques for Machine Learning (ML) applications. Among the most recent quantum ML approaches, Quantum Neural Networks (QNN) emerged as an important tool for data analysis. With the QNN advent, higher-level programming interfaces for QNN have been developed. In this paper, we survey the current state-of-the-art high-level programming approaches for QNN development. We discuss target architectures, critical QNN algorithmic components, such as the hybrid workflow of Quantum Annealers and Parametrized Quantum Circuits, QNN architectures, optimizers, gradient calculations, and applications. Finally, we overview the existing programming QNN frameworks, their software architecture, and associated quantum simulators.

2.
Phys Rev Lett ; 118(20): 205101, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28581804

RESUMEN

Using a 3D fully kinetic approach, we disentangle and explain the ion and electron dynamics of the solar wind interaction with a weakly outgassing comet. We show that, to first order, the dynamical interaction is representative of a four-fluid coupled system. We self-consistently simulate and identify the origin of the warm and suprathermal electron distributions observed by ESA's Rosetta mission to comet 67P/Churyumov-Gerasimenko and conclude that a detailed kinetic treatment of the electron dynamics is critical to fully capture the complex physics of mass-loading plasmas.

3.
Sci Rep ; 14(1): 3004, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321050

RESUMEN

The three-dimensional turbulent flow around a Flettner rotor, i.e. an engine-driven rotating cylinder in an atmospheric boundary layer, is studied via direct numerical simulations (DNS) for three different rotation speeds ([Formula: see text]). This technology offers a sustainable alternative mainly for marine propulsion, underscoring the critical importance of comprehending the characteristics of such flow. In this study, we evaluate the aerodynamic loads produced by the rotor of height h, with a specific focus on the changes in lift and drag force along the vertical axis of the cylinder. Correspondingly, we observe that vortex shedding is inhibited at the highest [Formula: see text] values investigated. However, in the case of intermediate [Formula: see text], vortices continue to be shed in the upper section of the cylinder ([Formula: see text]). As the cylinder begins to rotate, a large-scale motion becomes apparent on the high-pressure side, close to the bottom wall. We offer both a qualitative and quantitative description of this motion, outlining its impact on the wake deflection. This finding is significant as it influences the rotor wake to an extent of approximately one hundred diameters downstream. In practical applications, this phenomenon could influence the performance of subsequent boats and have an impact on the cylinder drag, affecting its fuel consumption. This fundamental study, which investigates a limited yet significant (for DNS) Reynolds number and explores various spinning ratios, provides valuable insights into the complex flow around a Flettner rotor. The simulations were performed using a modern GPU-based spectral element method, leveraging the power of modern supercomputers towards fundamental engineering problems.

4.
Drug Discov Today ; 27(7): 1913-1923, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35597513

RESUMEN

A typical drug discovery project involves identifying active compounds with significant binding potential for selected disease-specific targets. Experimental high-throughput screening (HTS) is a traditional approach to drug discovery, but is expensive and time-consuming when dealing with huge chemical libraries with billions of compounds. The search space can be narrowed down with the use of reliable computational screening approaches. In this review, we focus on various machine-learning (ML) and deep-learning (DL)-based scoring functions developed for solving classification and ranking problems in drug discovery. We highlight studies in which ML and DL models were successfully deployed to identify lead compounds for which the experimental validations are available from bioassay studies.


Asunto(s)
Inteligencia Artificial , Descubrimiento de Drogas , Aprendizaje Automático , Bibliotecas de Moléculas Pequeñas
5.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35056120

RESUMEN

Drug discovery is the most expensive, time-demanding, and challenging project in biopharmaceutical companies which aims at the identification and optimization of lead compounds from large-sized chemical libraries. The lead compounds should have high-affinity binding and specificity for a target associated with a disease, and, in addition, they should have favorable pharmacodynamic and pharmacokinetic properties (grouped as ADMET properties). Overall, drug discovery is a multivariable optimization and can be carried out in supercomputers using a reliable scoring function which is a measure of binding affinity or inhibition potential of the drug-like compound. The major problem is that the number of compounds in the chemical spaces is huge, making the computational drug discovery very demanding. However, it is cheaper and less time-consuming when compared to experimental high-throughput screening. As the problem is to find the most stable (global) minima for numerous protein-ligand complexes (on the order of 106 to 1012), the parallel implementation of in silico virtual screening can be exploited to ensure drug discovery in affordable time. In this review, we discuss such implementations of parallelization algorithms in virtual screening programs. The nature of different scoring functions and search algorithms are discussed, together with a performance analysis of several docking softwares ported on high-performance computing architectures.

6.
J Supercomput ; 78(3): 3605-3620, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35210696

RESUMEN

In situ visualization on high-performance computing systems allows us to analyze simulation results that would otherwise be impossible, given the size of the simulation data sets and offline post-processing execution time. We develop an in situ adaptor for Paraview Catalyst and Nek5000, a massively parallel Fortran and C code for computational fluid dynamics. We perform a strong scalability test up to 2048 cores on KTH's Beskow Cray XC40 supercomputer and assess in situ visualization's impact on the Nek5000 performance. In our study case, a high-fidelity simulation of turbulent flow, we observe that in situ operations significantly limit the strong scalability of the code, reducing the relative parallel efficiency to only ≈ 21 % on 2048 cores (the relative efficiency of Nek5000 without in situ operations is ≈ 99 % ). Through profiling with Arm MAP, we identified a bottleneck in the image composition step (that uses the Radix-kr algorithm) where a majority of the time is spent on MPI communication. We also identified an imbalance of in situ processing time between rank 0 and all other ranks. In our case, better scaling and load-balancing in the parallel image composition would considerably improve the performance of Nek5000 with in situ capabilities. In general, the result of this study highlights the technical challenges posed by the integration of high-performance simulation codes and data-analysis libraries and their practical use in complex cases, even when efficient algorithms already exist for a certain application scenario.

7.
Front Big Data ; 4: 669097, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34870188

RESUMEN

Physics-Informed Neural Networks (PINN) are neural networks encoding the problem governing equations, such as Partial Differential Equations (PDE), as a part of the neural network. PINNs have emerged as a new essential tool to solve various challenging problems, including computing linear systems arising from PDEs, a task for which several traditional methods exist. In this work, we focus first on evaluating the potential of PINNs as linear solvers in the case of the Poisson equation, an omnipresent equation in scientific computing. We characterize PINN linear solvers in terms of accuracy and performance under different network configurations (depth, activation functions, input data set distribution). We highlight the critical role of transfer learning. Our results show that low-frequency components of the solution converge quickly as an effect of the F-principle. In contrast, an accurate solution of the high frequencies requires an exceedingly long time. To address this limitation, we propose integrating PINNs into traditional linear solvers. We show that this integration leads to the development of new solvers whose performance is on par with other high-performance solvers, such as PETSc conjugate gradient linear solvers, in terms of performance and accuracy. Overall, while the accuracy and computational performance are still a limiting factor for the direct use of PINN linear solvers, hybrid strategies combining old traditional linear solver approaches with new emerging deep-learning techniques are among the most promising methods for developing a new class of linear solvers.

8.
Artículo en Inglés | MEDLINE | ID: mdl-25679738

RESUMEN

The vast majority of parallel scientific applications distributes computation among processes that are in a busy state when computing and in an idle state when waiting for information from other processes. We identify the propagation of idle waves through processes in scientific applications with a local information exchange between the two processes. Idle waves are nondispersive and have a phase velocity inversely proportional to the average busy time. The physical mechanism enabling the propagation of idle waves is the local synchronization between two processes due to remote data dependency. This study provides a description of the large number of processes in parallel scientific applications as a continuous medium. This work also is a step towards an understanding of how localized idle periods can affect remote processes, leading to the degradation of global performance in parallel scientific applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA