Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Dev Cell ; 58(7): 565-581.e4, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36931270

RESUMEN

Limb development has long served as a model system for coordinated spatial patterning of progenitor cells. Here, we identify a population of naive limb progenitors and show that they differentiate progressively to form the skeleton in a complex, non-consecutive, three-dimensional pattern. Single-cell RNA sequencing of the developing mouse forelimb identified three progenitor states: naive, proximal, and autopodial, as well as Msx1 as a marker for the naive progenitors. In vivo lineage tracing confirmed this role and localized the naive progenitors to the outer margin of the limb, along the anterior-posterior axis. Sequential pulse-chase experiments showed that the progressive transition of Msx1+ naive progenitors into proximal and autopodial progenitors coincides with their differentiation to Sox9+ chondroprogenitors, which occurs along all the forming skeletal segments. Indeed, tracking the spatiotemporal sequence of differentiation showed that the skeleton forms progressively in a complex pattern. These findings suggest an alternative model for limb skeleton development.


Asunto(s)
Extremidades , Esqueleto , Animales , Ratones , Diferenciación Celular , Extremidades/crecimiento & desarrollo , Organogénesis , Esqueleto/crecimiento & desarrollo
2.
Sci Transl Med ; 8(338): 338ra68, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27169804

RESUMEN

Prostaglandins (PGs) play an important role in the ovulatory process. However, the role of the PG transporter (PGT) in this context remains unknown. We report that the expression of PGT, a transmembrane PG carrier protein, is markedly up-regulated in preovulatory human granulosa cells (GCs). Treatment with human chorionic gonadotropin (hCG), an ovulatory trigger, significantly increases the expression of PGT mRNA and protein in human GCs both in vivo and in vitro. The hCG-induced increase in the expression of PGT in cultured human GCs is mediated via protein kinase A and protein kinase C by way of the extracellular signal-regulated kinase pathway. PGT in cultured human GCs mediates the uptake of PGE2, thereby regulating its extracellular concentration. In vivo treatment of mice with PGT inhibitors effectively blocks ovulation and markedly attenuates the expression of key ovulatory genes. We hypothesize that the inhibition of PGT activity in GCs increases the extracellular concentration of PGE2, the ability of which to exert its ovulatory effect is compromised by desensitization of its cognate receptors. Together, these findings support the idea that PGT is an important mediator of ovulation and that its inhibitors may be viewed as potential candidates for nonhormonal contraception. These findings may also fill the gap in the understanding of PGT signaling, enhance the understanding of ovulatory disorders, and facilitate the treatment of infertility or subfertility in women by using nonsteroidal PG-based therapeutic approaches.


Asunto(s)
Transportadores de Anión Orgánico/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Células Cultivadas , Gonadotropina Coriónica/farmacología , Dinoprostona/metabolismo , Femenino , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Humanos , Ratones , Transportadores de Anión Orgánico/genética , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , Ovulación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
3.
Mol Cell Endocrinol ; 413: 145-56, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26112185

RESUMEN

G-protein coupled receptors (GPCRs) and their ligands provide precise tissue regulation and are therefore often restricted to specific animal phyla. For example, the gonadotropins and their receptors are crucial for vertebrate reproduction but absent from invertebrates. In mammals, LHR mainly couples to the PKA signaling pathway, and CREB is the major transcription factor of this pathway. Here we present the results of expressing elements of the human gonadotropin system in Drosophila. Specifically, we generated transgenic Drosophila expressing the human LH/CG receptor (denoted as LHR), a constitutively active form of LHR, and an hCG analog. We demonstrate activation-dependent signaling by LHR to direct Drosophila phenotypes including lethality and specific midline defects; these phenotypes were due to LHR activation of PKA/CREB pathway activity. That the LHR can act in an invertebrate demonstrates the conservation of factors required for GPCR function among phylogenetically distant organisms. This novel gonadotropin model may assist the identification of new modulators of mammalian fertility by exploiting the powerful genetic and pharmacological tools available in Drosophila.


Asunto(s)
Receptores de HL/metabolismo , Transducción de Señal , Animales , Animales Modificados Genéticamente , Drosophila melanogaster , Humanos , Receptores de HL/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA