Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Tree Physiol ; 44(1)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-37788052

RESUMEN

The ability of plants to adjust to the adverse effects of climate change is important for their survival and for their contribution to the global carbon cycle. This is particularly true in the Mediterranean region, which is among the regions that are most vulnerable to climate change. Here, we carried out a 2-year comparative ecophysiological study of ecosystem function in two similar Eastern Mediterranean forests of the same tree species (Pinus halepensis Mill.) under mild (Sani, Greece) and extreme (Yatir, Israel) climatic conditions. The partial effects of key environmental variables, including radiation, vapor pressure deficit, air temperature and soil moisture (Rg, D, T and soil water content (SWC), respectively), on the ecosystems' CO2 and water vapor fluxes were estimated using generalized additive models (GAMs). The results showed a large adjustment between sites in the seasonal patterns of both carbon and water fluxes and in the time and duration of the optimal period (defined here as the time when fluxes were within 85% of the seasonal maximum). The GAM analysis indicated that the main factor influencing the seasonal patterns was SWC, while T and D had significant but milder effects. During the respective optimal periods, the two ecosystems showed strong similarities in the fluxes' responses to the measured environmental variables, indicating similarity in their underlying physiological characteristics. The results indicate that Aleppo pine forests have a strong phenotypic adjustment potential to cope with increasing environmental stresses. This, in turn, will help their survival and their continued contribution to the terrestrial carbon sink in the face of climate change in this region.


Asunto(s)
Ecosistema , Pinus , Bosques , Árboles , Suelo , Pinus/fisiología , Ciclo del Carbono , Carbono
2.
Plants (Basel) ; 11(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36079636

RESUMEN

Two deciduous forest ecosystems, one dominated by Fagus sylvatica and a mixed one with Quercus cerris and Quercus frainetto, were monitored from an ecophysiological perspective during a five-year period, in order to assess seasonal fluctuations, establish links between phenology and ecophysiology, and reveal climatic controls. Field measurements of leaf area index (LAI), chlorophyll content, leaf specific mass (LSM), water potential (Ψ) and leaf photosynthesis (Aleaf) were performed approximately on a monthly basis. LAI, chlorophylls and LSM fluctuations followed a recurrent pattern yearly, with increasing values during spring leaf burst and expansion, relatively stable values during summer and decreasing values during autumn senescence. However, pre-senescence leaf fall and chlorophyll reductions were evident in the driest year. The dynamically responsive Aleaf and Ψ presented considerable inter-annual variation. Both oak species showed more pronounced depressions of Aleaf and Ψ compared to beech, yet the time-point of their appearance coincided and was the same for all species each year. Spring temperature had a positive role in the increasing phase of all ecophysiological processes while rising autumn temperature resulted in retarded senescence. Precipitation showed asymmetric effects on the measured ecophysiological parameters. The between-species differences in responses, climate sensitivity and climate memory are identified and discussed.

3.
Funct Plant Biol ; 38(4): 314-326, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32480887

RESUMEN

A leaf gross photosynthesis (A) model for three Mediterranean species from different functional groups (the evergreen sclerophyll Arbutus unedo L., the deciduous tree Quercus frainetto Ten. and the semi-deciduous shrub Phlomis fruticosa L.) has been developed through a 3-year seasonal study of gas exchange and plant ecophysiological parameters. The model estimates photosynthesis through four easily measured ecophysiological parameters (chlorophyll content, leaf mass per area (LMA), pre-dawn water potential, leaf temperature) and two meteorological parameters (PAR and average temperature of the 33-day period before measurement (T33)), with a coefficient of determination r2=0.88 (P<0.001). The enhanced accuracy of the presented model may be ascribed to the incorporation of (i) water potential effects on A and (ii) temperature effects on A not only in the short term, but also in the long term (acclimation). Water potential and temperature effects may be considered especially important for species of Mediterranean ecosystems, where strong seasonal variation of these parameters often have a major role in plant growth and survival.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA