Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38776787

RESUMEN

DNA gyrase and topoisomerase IV play significant role in maintaining the correct structure of DNA during replication and they have been identified as validated targets in antibacterial drug discovery. Inadequate pharmacokinetic properties are responsible for many failures during drug discovery and their estimation in the early phase of this process maximizes the chance of getting useful drug candidates. Passive gastrointestinal absorption of a selected group of thirteen dual DNA gyrase and topoisomerase IV inhibitors was estimated using two in vitro tests - parallel artificial membrane permeability assay (PAMPA) and biopartitioning micellar chromatography (BMC). Due to good correlation between obtained results, passive gastrointestinal absorption of remaining ten compounds was estimated using only BMC. With this experimental setup, it was possible to identify compounds with high values of retention factors (k) and highest expected passive gastrointestinal absorption, and compounds with low values of k for which low passive gastrointestinal absorption is predicted. Quantitative structure-retention relationship (QSRR) modelling was performed by creating multiple linear regression (MLR), partial least squares (PLS) and support vector machines (SVM) models. Descriptors with the highest influence on retention factor were identified and their interpretation can be used for the design of new compounds with improved passive gastrointestinal absorption.


Asunto(s)
Absorción Gastrointestinal , Relación Estructura-Actividad Cuantitativa , Inhibidores de Topoisomerasa II , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacocinética , Micelas , Modelos Lineales , Membranas Artificiales , Girasa de ADN/metabolismo , Girasa de ADN/química , Humanos , Topoisomerasa de ADN IV/metabolismo , Topoisomerasa de ADN IV/antagonistas & inhibidores , Topoisomerasa de ADN IV/química
2.
Chem Biol Interact ; 399: 111138, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38992768

RESUMEN

Oxidative stress status, as a disruption of redox homeostasis, in the blood sera of Wistar rats caused by repeated application of selected acetylcholinesterase reactivators - asoxime, obidoxime, K027, K048, K074, and K075 were evaluated. Throughout this study, each oxime in a dose of 0.1 of LD50/kg im was given 2x/week for 4 weeks. Then, seven days after the last oximes' application, markers of lipid peroxidation (malondialdehyde, MDA), and protein oxidation (advanced oxidation protein products, AOPP), as well as the activity of antioxidant enzymes (catalase, CAT, superoxide dismutase, SOD, reduced glutathione, GSH, and oxidized glutathione, GSSG), were determined. Oxidative stress parameters, MDA and AOPP were significantly highest in the K048-, K074- and K075-treated groups (p < 0.001). The activity of CAT was significantly elevated in the obidoxime-treated group (p < 0.05), while treatment with K027, K048, and K074 induced high elevation in SOD levels (p < 0.01, p < 0.001). Interestingly, the activity of GSH in each oxime-treated group was significantly elevated. Unlike, treatment with obidoxime caused elevation in GSSG levels (p < 0.01). As a continuation of our previously published data, these results assure that applied oximes following subacute treatment ameliorated the oxidative status and further adverse systemic toxic effects in rats.


Asunto(s)
Biomarcadores , Glutatión , Estrés Oxidativo , Oximas , Ratas Wistar , Animales , Estrés Oxidativo/efectos de los fármacos , Oximas/farmacología , Biomarcadores/sangre , Ratas , Masculino , Glutatión/sangre , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/sangre , Peroxidación de Lípido/efectos de los fármacos , Catalasa/metabolismo , Catalasa/sangre , Malondialdehído/sangre , Malondialdehído/metabolismo , Reactivadores de la Colinesterasa/farmacología , Productos Avanzados de Oxidación de Proteínas/sangre , Antioxidantes/metabolismo , Antioxidantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA