RESUMEN
Disparities remain in the representation of marginalized students in STEM. Classroom-based experiential learning opportunities can increase student confidence and academic success; however, the effectiveness of extending learning to outdoor settings is unknown. Our objectives were to examine (a) demographic gaps in ecology and evolutionary biology (EEB) major completion, college graduation, and GPAs for students who did and did not enroll in field courses, (b) whether under-represented demographic groups were less likely to enroll in field courses, and (c) whether under-represented demographic groups were more likely to feel increased competency in science-related tasks (hereafter, self-efficacy) after participating in field courses. We compared the relationships among academic success measures and demographic data (race/ethnicity, socioeconomic status, first-generation, and gender) for UC Santa Cruz undergraduate students admitted between 2008 and 2019 who participated in field courses (N = 941 students) and who did not (N = 28,215 students). Additionally, we administered longitudinal surveys to evaluate self-efficacy gains during field-based versus classroom-based courses (N = 570 students). We found no differences in the proportion of students matriculating at the university as undecided, proposed EEB, or proposed other majors across demographic groups. However, five years later, under-represented students were significantly less likely to graduate with EEB degrees, indicating retention rather than recruitment drives disparities in representation. This retention gap is partly due to a lower rate of college completion and partly through attrition to other majors. Although under-represented students were less likely to enroll in field courses, field courses were associated with higher self-efficacy gains, higher college graduation rates, higher EEB major retention, and higher GPAs at graduation. All demographic groups experienced significant increases in self-efficacy during field-based but not lecture-based courses. Together, our findings suggest that increasing the number of field courses and actively facilitating access to students from under-represented groups can be a powerful tool for increasing STEM diversity.
RESUMEN
Understanding the evolutionary consequences of anthropogenic change is an emerging topic in evolutionary biology. While highly sensitive species may go extinct in response to anthropogenic habitat alteration, those with broader environmental tolerances may persist and adapt to the changes. Here, we use morphological data from the brown anole (Anolis sagrei), a lizard species that lives in both natural and human-disturbed habitats, to examine the impact of anthropogenic habitat alteration. We find populations inhabiting disturbed habitats were significantly larger in snout-vent length, hindspan, and mass and provide evidence that the observed divergence in hindspan is driven by human-induced changes in habitat structure. Populations were found to be genetically distinct among islands but are not genetically differentiated between habitat types on islands. Thus, the observed pattern of intra-island morphological differences cannot be explained by separate founding populations. Rather, our results are consistent with morphological differences between habitats having arisen in situ on each island. Results underscore the significant impact anthropogenic change may have on evolutionary trajectories of populations that persist in human-altered habitats.