Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 28(14): 20967-20977, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32680146

RESUMEN

We report the first experimental parametric analysis of subwavelength monolithic high-contrast grating (MHCG) mirrors. To date, subwavelength grating mirrors have been fabricated by suspending a thin grating membrane in the air or placing it on a low refractive index material - a scheme that requires sophisticated processing and makes the gratings sensitive to mechanical stress, impeding current injection, and heat dissipation if used in active devices. Inherently MHCGs are well suited for optoelectronic devices because they can be fabricated in all possible material systems. Here we demonstrate above 90% optical power reflectance, strong polarization discrimination. Based on experimental analysis aided by numerical simulations, we demonstrate the possibility of tuning the spectral characteristics of MHCGs reflectance for more than 200 nm via modification of the duty cycle of the MHCG stripes. We show our MHCG tuning method is convenient to define the properties of MHCG devices during the device processing.

2.
Materials (Basel) ; 17(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39336243

RESUMEN

This work reports on the possibility of sustaining a stable operation of polarization-doped InGaN light emitters over a particularly broad temperature range. We obtained efficient emission from InGaN light-emitting diodes between 20 K and 295 K and from laser diodes between 77 K and 295 K under continuous wave operation. The main part of the p-type layers was fabricated from composition-graded AlGaN. To optimize injection efficiency and improve contact resistance, we introduced thin Mg-doped layers of GaN (subcontact) and AlGaN (electron blocking layer in the case of laser diodes). In the case of LEDs, the optical emission efficiency at low temperatures seems to be limited by electron overshooting through the quantum wells. For laser diodes, a limiting factor is the freeze-out of the magnesium-doped electron blocking layer for temperatures below 160 K. The GaN:Mg subcontact layer works satisfyingly even at the lowest operating temperature (20 K).

3.
Materials (Basel) ; 17(18)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39336261

RESUMEN

The impact of wet treatment using an (NH4)2S-alcohol solution on the interface state of the p-GaN/Ni/Au/Pt contact system and laser diode processing was investigated. Sulfur wet cleaning resulted in reduced surface roughness and contact resistivity. The lowest specific contact resistance (ρc < 1 × 10-4 Ω·cm2) was achieved with samples treated with an (NH4)2S-isopropanol solution, whereas the highest resistivity (ρc = 3.3 × 10-4 Ω·cm2) and surface roughness (Ra = 16 nm) were observed in samples prepared by standard methods. Annealing the contact system in an N2 + O2 + H2O atmosphere caused degradation through species inter-diffusion and metal-metal solid solution formation, irrespective of the preparation method. Standard prepared substrates developed a thin GaN-Au intermediate layer at the interface after heat treatment. Enhanced adhesion and the absence of GaN decomposition were observed in samples additionally cleaned with the (NH4)2S-solvent solution. Complete oxidation of nickel to NiO was observed in samples that underwent additional sulfur solution treatment. The intensity of metal species mixing and nickel oxidation was influenced by the metal diffusion rate and was affected by the initial state of the GaN substrate obtained through different wet treatment methods.

4.
Materials (Basel) ; 16(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37834705

RESUMEN

In this paper, we investigate the effect of Pd thickness and heat treatment on Pd/Ni/Au/p-GaN metal contacts. The as-deposited samples exhibit a smooth morphology and non-linear I-V characteristics. Heat treatment in a N2 atmosphere leads to degradation of the contact microstructure, resulting in diffusion of Ga, void formation on the interface and mixing of metals. Annealing in a mixture of N2 and O2 improves adhesion and reduces contact resistance. However, this process also induces GaN decomposition and species mixing. The mixing of metal-Ga and metal-metal remains unaffected by the method of thermal treatment but depends on gas composition for thin Pd contacts. To achieve low-resistance contacts (≈1 × 10-4 Ω cm2), we found that increasing the Pd thickness and using N2 + O2 as the annealing environment are effective measures. Nevertheless, the degradation effect of the annealed contact microstructure in the form of the void generation becomes evident as the thickness of Pd increases. Laser diodes (LDs) with optimized palladium-based contacts operate at a voltage of 4.1 V and a current density of 3.3 kA/cm².

5.
Micromachines (Basel) ; 14(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36838108

RESUMEN

The main objective of this work is to demonstrate and validate the feasibility of fabricating (Al, In) GaN laser diodes with etched facets. The facets are fabricated using a two-step dry and wet etching process: inductively coupled plasma-reactive ion etching in chlorine, followed by wet etching in tetramethylammonium hydroxide (TMAH). For the dry etching stage, an optimized procedure was used. For the wet etching step, the TMAH temperature was set to a constant value of 80 °C, and the only variable parameter was time. The time was divided into individual steps, each of 20 min. To validate the results, electro-optical parameters were measured after each step and compared with a cleaved reference, as well as with scanning electron microscope imaging of the front surface. It was determined that the optimal wet etching time was 40 min. For this time, the laser tested achieved a fully comparable threshold current (within 10%) with the cleaved reference. The described technology is an important step for the future manufacturing of photonic integrated circuits with laser diodes integrated on a chip and for ultra-short-cavity lasers.

6.
Sci Rep ; 11(1): 21, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420146

RESUMEN

In this work we investigate the role of threading dislocations in nitride light emitters with different indium composition. We compare the properties of laser diodes grown on the low defect density GaN substrate with their counterparts grown on sapphire substrate in the same epitaxial process. All structures were produced by metalorganic vapour phase epitaxy and emit light in the range 383-477 nm. We observe that intensity of electroluminescence is strong in the whole spectral region for devices grown on GaN, but decreases rapidly for the devices on sapphire and emitting at wavelength shorter than 420 nm. We interpret this behaviour in terms of increasing importance of dislocation related nonradiative recombination for low indium content structures. Our studies show that edge dislocations are the main source of nonradiative recombination. We observe that long wavelength emitting structures are characterized by higher average light intensity in cathodoluminescence and better thermal stability. These findings indicate that diffusion path of carriers in these samples is shorter, limiting the amount of carriers reaching nonradiative recombination centers. According to TEM images only mixed dislocations open into the V-pits, usually above the multi quantum wells thus not influencing directly the emission.

7.
ACS Appl Mater Interfaces ; 13(6): 7476-7484, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33529520

RESUMEN

In this work, we study the thermal degradation of In-rich InxGa1-xN quantum wells (QWs) and propose explanation of its origin based on the diffusion of metal vacancies. The structural transformation of the InxGa1-xN QWs is initiated by the formation of small initial voids created due to agglomeration of metal vacancies diffusing from the layers beneath the QW. The presence of voids in the QW relaxes the mismatch stress in the vicinity of the void and drives In atoms to diffuse to the relaxed void surroundings. The void walls enriched in In atoms are prone for thermal decomposition, what leads to a subsequent disintegration of the surrounding lattice. The phases observed in the degraded areas of QWs contain voids partly filled with crystalline In and amorphous material, surrounded by the rim of high In-content InxGa1-xN or pure InN; the remaining QW between the voids contains residual amount of In. In the case of the InxGa1-xN QWs deposited on the GaN layer doped to n-type or on unintentionally doped GaN, we observe a preferential degradation of the first grown QW, while doping of the underlying GaN layer with Mg prevents the degradation of the closest InxGa1-xN QW. The reduction in the metal vacancy concentration in the InxGa1-xN QWs and their surroundings is crucial for making them more resistant to thermal degradation.

8.
Sci Rep ; 10(1): 1235, 2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-31988430

RESUMEN

We studied mechanisms of recombination in InGaN quantum wells in polar and semipolar structures. Photoluminescence measurements show that the optical emission linewidths for polar and semipolar structures are almost identical suggesting the same level of indium fluctuations in quanutm wells. Their "peak-energy-versus-temperature" relations demonstrate very pronounced "s-shape" effect. Emission linewidth measured by cathodoluminescence does not depend on area from which the light is collected meaning that the fluctuations are smaller that 100 nm. The time scale of recombination process are of the order of 80 ns for polar and 2 ns for semipolar. Energy dispersion of the recombination time is strong in polar structures and very weak in semipolar ones which can be interperted in terms of electric field influence on photoluminescence lifetime energy dispersion. At room temparture emmission is dominated by Schockley-Hall-Read recombination and does not show any dispersion. Rate equation analysis of photoluminescence transients show domination of excitonic recombination in the case of polar samples (low temperature) and bimolecular in the case of semipolar ones. Both types of quantum wells, polar and semipolar look similar from the point of view of localization but differ in their radiative recombination mechanisms.

9.
ACS Appl Mater Interfaces ; 12(46): 52089-52094, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33161712

RESUMEN

We studied degradation mechanisms of ultraviolet InGaN laser diodes emitting in the UVA range. Short wavelength nitride devices are subjected to much faster degradation, under the same packaging and testing conditions, than their longer wavelength counterparts. Transmission electron microscopy analysis of the degraded laser diodes showed pronounced damage to facets in the area of the active layer (waveguide, quantum wells, and electron blocking layer). Energy-dispersive X-ray spectroscopy showed that the active layers were heavily oxidized, forming a compound close in composition to Ga2O3 with proportional addition of Al in the respective area. The oxidation depth was roughly proportional to the intensity of the optical field. We propose UV-light-induced water splitting on a semiconductor surface as a mechanism of the oxidation and degradation of these devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA