Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 28(6): 2328-2342, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37217677

RESUMEN

The proper maturation of emotional and sensory circuits requires fine-tuning of serotonin (5-HT) level during early postnatal development. Consistently, dysfunctions of the serotonergic system have been associated with neurodevelopmental psychiatric diseases, including autism spectrum disorders (ASD). However, the mechanisms underlying the developmental effects of 5-HT remain partially unknown, one obstacle being the action of 5-HT on different cell types. Here, we focused on microglia, which play a role in brain wiring refinement, and we investigated whether the control of these cells by 5-HT is relevant for neurodevelopment and spontaneous behaviors in mice. Since the main 5-HT sensor in microglia is the 5-HT2B receptor subtype, we prevented 5-HT signaling specifically in microglia by conditional invalidation of the Htr2b gene in these cells. We observed that abrogating the serotonergic control of microglia during early postnatal development affects the phagolysosomal compartment of these cells and their proximity to dendritic spines and perturbs neuronal circuits maturation. Furthermore, this early ablation of microglial 5-HT2B receptors leads to adult hyperactivity in a novel environment and behavioral defects in sociability and flexibility. Importantly, we show that these behavioral alterations result from a developmental effect, since they are not observed when microglial Htr2b invalidation is induced later, at P30 onward. Thus, a primary alteration of 5-HT sensing in microglia, during a critical time window between birth and P30, is sufficient to impair social and flexibility skills. This link between 5-HT and microglia may explain the association between serotonergic dysfunctions and behavioral traits like impaired sociability and inadaptability to novelty, which are prominent in psychiatric disorders such as ASD.


Asunto(s)
Microglía , Serotonina , Humanos , Ratones , Animales , Serotonina/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Transducción de Señal
2.
Pharmacol Rev ; 73(1): 310-520, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33370241

RESUMEN

5-HT receptors expressed throughout the human body are targets for established therapeutics and various drugs in development. Their diversity of structure and function reflects the important role 5-HT receptors play in physiologic and pathophysiological processes. The present review offers a framework for the official receptor nomenclature and a detailed understanding of each of the 14 5-HT receptor subtypes, their roles in the systems of the body, and, where appropriate, the (potential) utility of therapeutics targeting these receptors. SIGNIFICANCE STATEMENT: This review provides a comprehensive account of the classification and function of 5-hydroxytryptamine receptors, including how they are targeted for therapeutic benefit.


Asunto(s)
Farmacología Clínica , Serotonina , Humanos , Ligandos , Receptores de Serotonina
3.
Circulation ; 143(13): 1317-1330, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33474971

RESUMEN

BACKGROUND: Myocardial infarction (MI) induces an intense injury response that ultimately generates a collagen-dominated scar. Although required to prevent ventricular rupture, the fibrotic process is often sustained in a manner detrimental to optimal recovery. Cardiac myofibroblasts are the cells tasked with depositing and remodeling collagen and are a prime target to limit the fibrotic process after MI. Serotonin 2B receptor (5-HT2B) signaling has been shown to be harmful in a variety of cardiopulmonary pathologies and could play an important role in mediating scar formation after MI. METHODS: We used 2 pharmacological antagonists to explore the effect of 5-HT2B inhibition on outcomes after MI and characterized the histological and microstructural changes involved in tissue remodeling. Inducible 5-HT2B ablation driven by Tcf21MCM and PostnMCM was used to evaluate resident cardiac fibroblast- and myofibroblast-specific contributions of 5-HT2B, respectively. RNA sequencing was used to motivate subsequent in vitro analyses to explore cardiac fibroblast phenotype. RESULTS: 5-HT2B antagonism preserved cardiac structure and function by facilitating a less fibrotic scar, indicated by decreased scar thickness and decreased border zone area. 5-HT2B antagonism resulted in collagen fiber redistribution to thinner collagen fibers that were more anisotropic, enhancing left ventricular contractility, whereas fibrotic tissue stiffness was decreased, limiting the hypertrophic response of uninjured cardiomyocytes. Using a tamoxifen-inducible Cre, we ablated 5-HT2B from Tcf21-lineage resident cardiac fibroblasts and saw similar improvements to the pharmacological approach. Tamoxifen-inducible Cre-mediated ablation of 5-HT2B after onset of injury in Postn-lineage myofibroblasts also improved cardiac outcomes. RNA sequencing and subsequent in vitro analyses corroborate a decrease in fibroblast proliferation, migration, and remodeling capabilities through alterations in Dnajb4 expression and Src phosphorylation. CONCLUSIONS: Together, our findings illustrate that 5-HT2B expression in either cardiac fibroblasts or activated myofibroblasts directly contributes to excessive scar formation, resulting in adverse remodeling and impaired cardiac function after MI.


Asunto(s)
Fibrosis/tratamiento farmacológico , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/fisiopatología , Antagonistas del Receptor de Serotonina 5-HT2/uso terapéutico , Animales , Femenino , Humanos , Ratones , Ratones Noqueados , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Transducción de Señal
4.
J Immunol ; 204(10): 2808-2817, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32253244

RESUMEN

Macrophages can either promote or resolve inflammatory responses, and their polarization state is modulated by peripheral serotonin (5-hydroxytryptamine [5-HT]). In fact, pro- and anti-inflammatory macrophages differ in the expression of serotonin receptors, with 5-HT2B and 5-HT7 expression restricted to M-CSF-primed monocyte-derived macrophages (M-MØ). 5-HT7 drives the acquisition of profibrotic and anti-inflammatory functions in M-MØ, whereas 5-HT2B prevents the degeneration of spinal cord mononuclear phagocytes and modulates motility of murine microglial processes. Because 5-HT2B mediates clinically relevant 5-HT-related pathologies (valvular heart disease, pulmonary arterial hypertension) and is an off target of anesthetics, antiparkinsonian drugs, and selective serotonin reuptake inhibitors, we sought to determine the transcriptional consequences of 5-HT2B engagement in human macrophages, for which 5-HT2B signaling remains unknown. Assessment of the effects of specific agonists and antagonist revealed that 5-HT2B engagement modifies the cytokine and gene signature of anti-inflammatory M-MØ, upregulates the expression of aryl hydrocarbon receptor (AhR) target genes, and stimulates the transcriptional activation of AhR. Moreover, we found that 5-HT dose dependently upregulates the expression of AhR target genes in M-MØ and that the 5-HT-mediated activation of AhR is 5-HT2B dependent because it is abrogated by the 5-HT2B-specific antagonist SB204741. Altogether, our results demonstrate the existence of a functional 5-HT/5-HT2B/AhR axis in human macrophages and indicate that 5-HT potentiates the activity of a transcription factor (AhR) that regulates immune responses and the biological responses to xenobiotics.


Asunto(s)
Macrófagos/fisiología , Microglía/fisiología , Receptor de Serotonina 5-HT2B/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Serotonina/metabolismo , Diferenciación Celular , Células Cultivadas , Humanos , Indoles/farmacología , Fagocitosis , ARN Interferente Pequeño/genética , Receptores de Hidrocarburo de Aril/genética , Receptores de Serotonina/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Transducción de Señal , Tiofenos/farmacología , Activación Transcripcional , Transcriptoma
5.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555462

RESUMEN

During mouse pregnancy placental lactogens stimulate prolactin receptors on pancreatic islet beta cells to induce expression of the tryptophan hydroxylase Tph1, resulting in the synthesis and secretion of serotonin. Presently, the functional relevance of this phenomenon is unclear. One hypothesis is that serotonin-induced activation of 5-HT2B receptors on beta cells stimulates beta cell proliferation during pregnancy. We tested this hypothesis via three different mouse models: (i) total Tph1KO mice, (ii) 129P2/OlaHsd mice, which are incompetent to upregulate islet Tph1 during pregnancy, whereas Tph1 is normally expressed in the intestine, mammary glands, and placenta, and (iii) Htr2b-deficient mice. We observed normal pregnancy-induced levels of beta cell proliferation in total Tph1KO mice, 129P2/OlaHsd mice, and in Htr2b-/- mice. The three studied mouse models indicate that islet serotonin production and its signaling via 5-HT2B receptors are not required for the wave of beta cell proliferation that occurs during normal mouse pregnancy.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Femenino , Animales , Embarazo , Ratones , Serotonina/metabolismo , Placenta/metabolismo , Islotes Pancreáticos/metabolismo , Células Secretoras de Insulina/metabolismo , Proliferación Celular , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo
6.
Glia ; 69(3): 638-654, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33095507

RESUMEN

Severe peripheral infections induce an adaptive sickness behavior and an innate immune reaction in various organs including the brain. On the long term, persistent alteration of microglia, the brain innate immune cells, is associated with an increased risk of psychiatric disorders. It is thus critical to identify genes and mechanisms controlling the intensity and duration of the neuroinflammation induced by peripheral immune challenges. We tested the hypothesis that the 5-HT2B receptor, the main serotonin receptor expressed by microglia, might represent a valuable candidate. First, we observed that Htr2b-/- mice, knock-out for the 5-HT2B receptor gene, developed, when exposed to a peripheral lipopolysaccharide (LPS) challenge, a stronger weight loss compared to wild-type mice; in addition, comparison of inflammatory markers in brain, 4 and 24 hr after LPS injection, showed that Htr2b deficiency leads to a prolonged neuroinflammation. Second, to assess the specific contribution of the microglial 5-HT2B receptor, we investigated the response to LPS of conditional knock-out mice invalidated for Htr2b in microglia only. We found that deletion of Htr2b in microglia since birth is sufficient to cause enhanced weight loss and increased neuroinflammatory response upon LPS injection at adult stage. In contrast, mice deleted for microglial Htr2b in adulthood responded normally to LPS, revealing a neonatal developmental effect. These results highlight the role of microglia in the response to a peripheral immune challenge and suggest the existence of a developmental, neonatal period, during which instruction of microglia through 5-HT2B receptors is necessary to prevent microglia overreactivity in adulthood.


Asunto(s)
Conducta de Enfermedad , Microglía , Animales , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Receptor de Serotonina 5-HT2B/genética , Serotonina , Pérdida de Peso
7.
Mol Psychiatry ; 23(12): 2277-2286, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29875475

RESUMEN

Cannabis use is increasing in the United States, as are its adverse effects. We investigated the genetics of an adverse consequence of cannabis use: cannabis-related aggression (CRA) using a genome-wide association study (GWAS) design. Our GWAS sample included 3269 African Americans (AAs) and 2546 European Americans (EAs). An additional 89 AA subjects from the Grady Trauma Project (GTP) were also examined using a proxy-phenotype replication approach. We identified genome-wide significant risk loci contributing to CRA in AAs at the serotonin receptor 2B receptor gene (HTR2B), and the lead SNP, HTR2B*rs17440378, showed nominal association to aggression in the GTP cohort of cannabis-exposed subjects. A priori evidence linked HTR2B to impulsivity/aggression but not to cannabis response. Human functional data regarding the HTR2B variant further supported our finding. Treating an Htr2b-/- knockout mouse with THC resulted in increased aggressive behavior, whereas wild-type mice following THC administration showed decreased aggression in the resident-intruder paradigm, demonstrating that HTR2B variation moderates the effects of cannabis on aggression. These concordant findings in mice and humans implicate HTR2B as a major locus associated with cannabis-induced aggression.


Asunto(s)
Fumar Marihuana/genética , Receptor de Serotonina 5-HT2B/genética , Receptor de Serotonina 5-HT2B/metabolismo , Adulto , Negro o Afroamericano/genética , Agresión/efectos de los fármacos , Alcoholismo/genética , Animales , Cannabis/efectos adversos , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Abuso de Marihuana/genética , Fumar Marihuana/efectos adversos , Ratones , Ratones Noqueados , Persona de Mediana Edad , Receptor de Serotonina 5-HT2B/fisiología , Factores de Riesgo , Población Blanca/genética
8.
Pharmacol Res ; 140: 14-20, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30223085

RESUMEN

Serotonin is a neurotransmitter widely conserved from ancient organisms lacking nervous systems through man, and its presence precedes the appearance of nervous systems on both developmental and evolutionary time scales. Serotonin receptor subtypes diversified approximately at the time period during which vertebrates diverged from invertebrates. The biological and clinical importance of serotonin receptors, may benefit from studies on their evolution. Although potentially informative about their pathophysiological functions, reviews on this topic are sparse. Several observations support basic functions mediated by serotonin, both in periphery and central nervous system. In particular, 5-HT2B receptors have been implicated in embryonic development, including cell proliferation, survival, and/or differentiation, in either neural crest cell derivatives, myeloid cell lineage, or heart embryogenesis. In this review, we collected existing data about the genomic association between the RPN2 proteasome subunit gene Psmd1 and the 5-HT2B receptor gene Htr2b. We discuss about the possibility that, during genome duplications, a single copy of this pair of genes has been conserved, suggesting a strong selective pressure. Many basic physiological functions in which serotonin system is involved could be linked to the early association of these two genes in pre-vertebrates. Their evolutionary association highlights the possibility that the 5-HT2B receptor gene, Htr2b, is the common ancestor of 5-HT2A/2B/2C-receptor subfamily. Disentangling these possibilities could bring new understanding of the respective importance of these receptors in pathophysiology of serotonin.


Asunto(s)
Receptores de Serotonina/fisiología , Animales , Evolución Molecular , Genómica , Humanos , Complejo de la Endopetidasa Proteasomal/fisiología , Serotonina/metabolismo
9.
J Neurosci ; 37(43): 10372-10388, 2017 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-28935766

RESUMEN

Addiction is a maladaptive pattern of behavior following repeated use of reinforcing drugs in predisposed individuals, leading to lifelong changes. Common among these changes are alterations of neurons releasing dopamine in the ventral and dorsal territories of the striatum. The serotonin 5-HT2B receptor has been involved in various behaviors, including impulsivity, response to antidepressants, and response to psychostimulants, pointing toward putative interactions with the dopamine system. Despite these findings, it remains unknown whether 5-HT2B receptors directly modulate dopaminergic activity and the possible mechanisms involved. To answer these questions, we investigated the contribution of 5-HT2B receptors to cocaine-dependent behavioral responses. Male mice permanently lacking 5-HT2B receptors, even restricted to dopamine neurons, developed heightened cocaine-induced locomotor responses. Retrograde tracing combined with single-cell mRNA amplification indicated that 5-HT2B receptors are expressed by mesolimbic dopamine neurons. In vivo and ex vivo electrophysiological recordings showed that 5-HT2B-receptor inactivation in dopamine neurons affects their neuronal activity and increases AMPA-mediated over NMDA-mediated excitatory synaptic currents. These changes are associated with lower ventral striatum dopamine activity and blunted cocaine self-administration. These data identify the 5-HT2B receptor as a pharmacological intermediate and provide mechanistic insight into attenuated dopamine tone following exposure to drugs of abuse.SIGNIFICANCE STATEMENT Here we report that mice lacking 5-HT2B receptors totally or exclusively in dopamine neurons exhibit heightened cocaine-induced locomotor responses. Despite the sensitized state of these mice, we found that associated changes include lower ventral striatum dopamine activity and lower cocaine operant self-administration. We described the selective expression of 5-HT2B receptors in a subpopulation of dopamine neurons sending axons to the ventral striatum. Increased bursting in vivo properties of these dopamine neurons and a concomitant increase in AMPA synaptic transmission to ex vivo dopamine neurons were found in mice lacking 5-HT2B receptors. These data support the idea that the chronic 5-HT2B-receptor inhibition makes mice behave like animals already exposed to cocaine with higher cocaine-induced locomotion associated with changes in dopamine neuron reactivity.


Asunto(s)
Cocaína/administración & dosificación , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Núcleo Accumbens/metabolismo , Receptor de Serotonina 5-HT2B/biosíntesis , Transducción de Señal/fisiología , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Femenino , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Núcleo Accumbens/efectos de los fármacos , Proyectos Piloto , Distribución Aleatoria , Receptor de Serotonina 5-HT2B/deficiencia , Autoadministración , Transducción de Señal/efectos de los fármacos
10.
J Biol Chem ; 292(15): 6352-6368, 2017 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-28258217

RESUMEN

The serotonin receptor subtypes 2 comprise 5-HT2A, 5-HT2B, and 5-HT2C, which are Gαq-coupled receptors and display distinct pharmacological properties. Although co-expressed in some brain regions and involved in various neurological disorders, their functional interactions have not yet been studied. We report that 5-HT2 receptors can form homo- and heterodimers when expressed alone or co-expressed in transfected cells. Co-immunoprecipitation and bioluminescence resonance energy transfer studies confirmed that 5-HT2C receptors interact with either 5-HT2A or 5-HT2B receptors. Although heterodimerization with 5-HT2C receptors does not alter 5-HT2C Gαq-dependent inositol phosphate signaling, 5-HT2A or 5-HT2B receptor-mediated signaling was totally blunted. This feature can be explained by a dominance of 5-HT2C on 5-HT2A and 5-HT2B receptor binding; in 5-HT2C-containing heterodimers, ligands bind and activate the 5-HT2C protomer exclusively. This dominant effect on the associated protomer was also observed in neurons, supporting the physiological relevance of 5-HT2 receptor heterodimerization in vivo Accordingly, exogenous expression of an inactive form of the 5-HT2C receptor in the locus ceruleus is associated with decreased 5-HT2A-dependent noradrenergic transmission. These data demonstrate that 5-HT2 receptors can form functionally asymmetric heterodimers in vitro and in vivo that must be considered when analyzing the physiological or pathophysiological roles of serotonin in tissues where 5-HT2 receptors are co-expressed.


Asunto(s)
Locus Coeruleus/metabolismo , Receptores de Serotonina 5-HT2/metabolismo , Transmisión Sináptica/fisiología , Animales , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Células HEK293 , Humanos , Masculino , Ratones , Multimerización de Proteína , Receptores de Serotonina 5-HT2/genética
11.
J Biol Chem ; 291(18): 9657-65, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-26921319

RESUMEN

Earlier findings have identified the requirement of insulin signaling on maturation and the translocation of serotonin (5-HT) transporter, SERT to the plasma membrane of the trophoblast in placenta. Because of the defect on insulin receptor (IR) in the trophoblast of the gestational diabetes mellitus (GDM)-associated placenta, SERT is found entrapped in the cytoplasm of the GDM-trophoblast. SERT is encoded by the same gene expressed in trophoblast and platelets. Additionally, alteration in plasma 5-HT levels and the 5-HT uptake rates are associated with the aggregation rates of platelets. Therefore, here, we investigated a novel hypothesis that GDM-associated defects in platelet IR should change their 5-HT uptake rates, and this should be a leading factor for thrombosis in GDM maternal blood. The maternal blood and the placentas were obtained at the time of cesarean section from the GDM and non-diabetic subjects (n = 6 for each group), and the platelets and trophoblasts were isolated to determine the IR activity, surface level of SERT, and their 5-HT uptake rates.Interestingly, no significant differences were evident in IR tyrosine phosphorylation or the downstream elements, AKT and S6K in platelets and their aggregation rates in both groups. Furthermore, insulin stimulation up-regulated 5-HT uptake rates of GDM-platelets as it does in the control group. However, the phosphorylation of IR and the downstream elements were significantly lower in GDM-trophoblast and showed no response to the insulin stimulation while they showed 4-fold increase to insulin stimulation in control group. Similarly, the 5-HT uptake rates of GDM-trophoblast and the SERT expression on their surface were severalfold lower compared with control subjects. IR is expressed in all tissues, but it is not known if diabetes affects IR in all tissues equally. Here, for the first time, our findings with clinical samples show that in GDM-associated defect on IR is tissue type-dependent. While IR is impaired in GDM-placenta, it is unaffected in GDM-platelet.


Asunto(s)
Plaquetas/metabolismo , Diabetes Gestacional/metabolismo , Insulina/metabolismo , Receptor de Insulina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Trofoblastos/metabolismo , Adolescente , Adulto , Plaquetas/patología , Diabetes Gestacional/patología , Femenino , Regulación de la Expresión Génica , Humanos , Embarazo , Receptor de Insulina/genética , Proteínas Quinasas S6 Ribosómicas/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Serotonina/genética , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Trombosis/genética , Trombosis/metabolismo , Trombosis/patología , Trofoblastos/patología
12.
J Cell Physiol ; 232(12): 3520-3529, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28109119

RESUMEN

Serotonin (5-HT) and its specific transporter, SERT play important roles in pregnancy. Using placentas dissected from 18d gestational SERT-knock out (KO), peripheral 5-HT (TPH1)-KO, and wild-type (WT) mice, we explored the role of 5-HT and SERT in placental functions in detail. An abnormal thick band of fibrosis and necrosis under the giant cell layer in SERT-KO placentas appeared only moderately in TPH1-KO and minimally present in WT placentas. The majority of the changes were located at the junctional zone of the placentas in SERT. The etiology of these findings was tested with TUNEL assays. The placentas from SERT-KO and TPH1-KO showed 49- and 8-fold increase in TUNEL-positive cells without a concurrent change in the DNA repair or cell proliferation compared to WT placentas. While the proliferation rate in the embryos of TPH1-KO mice was 16-fold lower than the rate in gestational age matched embryos of WT or SERT-KO mice. These findings highlight an important role of continuous 5-HT signaling on trophoblast cell viability. SERT may contribute to protecting trophoblast cells against cell death via terminating the 5-HT signaling which changes cell death ratio in trophoblast as well as proliferation rate in embryos. However, the cell death in SERT-KO placentas is in caspase 3-independent pathway.


Asunto(s)
Apoptosis , Caspasa 3/metabolismo , Placenta/enzimología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Serotonina/metabolismo , Animales , Glucemia/metabolismo , Proliferación Celular , Femenino , Genotipo , Insulina/sangre , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Placenta/metabolismo , Embarazo , Serotonina/sangre , Proteínas de Transporte de Serotonina en la Membrana Plasmática/deficiencia , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Transducción de Señal , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo
13.
Proc Natl Acad Sci U S A ; 111(52): E5697-705, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512553

RESUMEN

Serotonin (5-HT) transporter (SERT) regulates the level of 5-HT in placenta. Initially, we found that in gestational diabetes mellitus (GDM), whereas free plasma 5-HT levels were elevated, the 5-HT uptake rates of trophoblast were significantly down-regulated, due to impairment in the translocation of SERT molecules to the cell surface. We sought to determine the factors mediating the down-regulation of SERT in GDM trophoblast. We previously reported that an endoplasmic reticulum chaperone, ERp44, binds to Cys200 and Cys209 residues of SERT to build a disulfide bond. Following this posttranslational modification, before trafficking to the plasma membrane, SERT must be dissociated from ERp44; and this process is facilitated by insulin signaling and reversed by the insulin receptor blocker AGL2263. However, the GDM-associated defect in insulin signaling hampers the dissociation of ERp44 from SERT. Furthermore, whereas ERp44 constitutively occupies Cys200/Cys209 residues, one of the SERT glycosylation sites, Asp208 located between the two Cys residues, cannot undergo proper glycosylation, which plays an important role in the uptake efficiency of SERT. Herein, we show that the decrease in 5-HT uptake rates of GDM trophoblast is the consequence of defective insulin signaling, which entraps SERT with ERp44 and impairs its glycosylation. In this regard, restoring the normal expression of SERT on the trophoblast surface may represent a novel approach to alleviating some GDM-associated complications.


Asunto(s)
Diabetes Gestacional/metabolismo , Regulación hacia Abajo , Insulina/metabolismo , Proteínas de la Membrana/biosíntesis , Chaperonas Moleculares/biosíntesis , Proteínas de Transporte de Serotonina en la Membrana Plasmática/biosíntesis , Serotonina/metabolismo , Trofoblastos/metabolismo , Adolescente , Adulto , Diabetes Gestacional/patología , Femenino , Glicosilación , Humanos , Embarazo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Trofoblastos/patología
14.
Acta Neuropathol ; 131(3): 465-80, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26744351

RESUMEN

Microglia are the resident mononuclear phagocytes of the central nervous system and have been implicated in the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). During neurodegeneration, microglial activation is accompanied by infiltration of circulating monocytes, leading to production of multiple inflammatory mediators in the spinal cord. Degenerative alterations in mononuclear phagocytes are commonly observed during neurodegenerative diseases, yet little is known concerning the mechanisms leading to their degeneration, or the consequences on disease progression. Here we observed that the serotonin 2B receptor (5-HT2B), a serotonin receptor expressed in microglia, is upregulated in the spinal cord of three different transgenic mouse models of ALS. In mutant SOD1 mice, this upregulation was restricted to cells positive for CD11b, a marker of mononuclear phagocytes. Ablation of 5-HT2B receptor in transgenic ALS mice expressing mutant SOD1 resulted in increased degeneration of mononuclear phagocytes, as evidenced by fragmentation of Iba1-positive cellular processes. This was accompanied by decreased expression of key neuroinflammatory genes but also loss of expression of homeostatic microglial genes. Importantly, the dramatic effect of 5-HT2B receptor ablation on mononuclear phagocytes was associated with acceleration of disease progression. To determine the translational relevance of these results, we studied polymorphisms in the human HTR2B gene, which encodes the 5-HT2B receptor, in a large cohort of ALS patients. In this cohort, the C allele of SNP rs10199752 in HTR2B was associated with longer survival. Moreover, patients carrying one copy of the C allele of SNP rs10199752 showed increased 5-HT2B mRNA in spinal cord and displayed less pronounced degeneration of Iba1 positive cells than patients carrying two copies of the more common A allele. Thus, the 5-HT2B receptor limits degeneration of spinal cord mononuclear phagocytes, most likely microglia, and slows disease progression in ALS. Targeting this receptor might be therapeutically useful.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Sistema Mononuclear Fagocítico/patología , Receptor de Serotonina 5-HT2B/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Microglía/patología , Sistema Mononuclear Fagocítico/metabolismo , Neuronas Motoras/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Médula Espinal/patología
15.
Nature ; 468(7327): 1061-6, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21179162

RESUMEN

Impulsivity, describing action without foresight, is an important feature of several psychiatric diseases, suicidality and violent behaviour. The complex origins of impulsivity hinder identification of the genes influencing it and the diseases with which it is associated. Here we perform exon-focused sequencing of impulsive individuals in a founder population, targeting fourteen genes belonging to the serotonin and dopamine domain. A stop codon in HTR2B was identified that is common (minor allele frequency > 1%) but exclusive to Finnish people. Expression of the gene in the human brain was assessed, as well as the molecular functionality of the stop codon, which was associated with psychiatric diseases marked by impulsivity in both population and family-based analyses. Knockout of Htr2b increased impulsive behaviours in mice, indicative of predictive validity. Our study shows the potential for identifying and tracing effects of rare alleles in complex behavioural phenotypes using founder populations, and indicates a role for HTR2B in impulsivity.


Asunto(s)
Conducta Impulsiva/genética , Receptor de Serotonina 5-HT2B/genética , Receptor de Serotonina 5-HT2B/metabolismo , Animales , Encéfalo/metabolismo , Estudios de Casos y Controles , Línea Celular , Femenino , Finlandia , Efecto Fundador , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Genotipo , Humanos , Masculino , Trastornos Mentales/genética , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Linaje , Polimorfismo de Nucleótido Simple/genética , Testosterona/sangre , Testosterona/líquido cefalorraquídeo
18.
Mol Pharmacol ; 85(1): 127-38, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24174497

RESUMEN

The putative role of the N-terminal region of rhodopsin-like 7 transmembrane biogenic amine receptors in agonist-induced signaling has not yet been clarified despite recent advances in 7 transmembrane receptor structural biology. Given the existence of N-terminal nonsynonymous polymorphisms (R6G;E42G) within the HTR2B gene in a drug-abusing population, we assessed whether these polymorphisms affect 5-hydroxytryptamine 2B (5-HT2B) receptor in vitro pharmacologic and coupling properties in transfected COS-7 cells. Modification of the 5-HT2B receptor N terminus by the R6G;E42G polymorphisms increases such agonist signaling pathways as inositol phosphate accumulation as assessed by either classic or operational models. The N-terminal R6G;E42G mutations of the 5-HT2B receptor also increase cell proliferation and slow its desensitization kinetics compared with the wild-type receptor, further supporting a role for the N terminus in transduction efficacy. Furthermore, by coexpressing a tethered wild-type 5-HT2B receptor N terminus with a 5-HT2B receptor bearing a N-terminal deletion, we were able to restore original coupling. This reversion to normal activity of a truncated 5-HT2B receptor by coexpression of the membrane-tethered wild-type 5-HT2B receptor N terminus was not observed using a membrane-tethered 5-HT2B receptor R6G;E42G N terminus. These data suggest that the N terminus exerts a negative control over basal as well as agonist-stimulated receptor activity that is lost in the R6G;E42G mutant. Our findings reveal a new and unanticipated role of the 5-HT2B receptor N terminus as a negative modulator, affecting both constitutive and agonist-stimulated activity. Moreover, our data caution against excluding the N terminus and extracellular loops in structural studies of this 7 transmembrane receptor family.


Asunto(s)
Receptor de Serotonina 5-HT2B/genética , Secuencia de Aminoácidos , Animales , Transferencia de Energía por Resonancia de Bioluminiscencia , Células COS , Proliferación Celular , Chlorocebus aethiops , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Datos de Secuencia Molecular , Mutación , Polimorfismo Genético , Ensayo de Unión Radioligante , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Transducción de Señal
19.
Blood ; 119(7): 1772-80, 2012 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-22186990

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by lung endothelial dysfunction and vascular remodeling. Recently, bone marrow progenitor cells have been localized to PAH lungs, raising the question of their role in disease progression. Independently, serotonin (5-HT) and its receptors have been identified as contributors to the PAH pathogenesis. We hypothesized that 1 of these receptors, 5-HT(2B), is involved in bone marrow stem cell mobilization that participates in the development of PAH and pulmonary vascular remodeling. A first study revealed expression of 5-HT(2B) receptors by circulating c-kit(+) precursor cells, whereas mice lacking 5-HT(2B) receptors showed alterations in platelets and monocyte-macrophage numbers, and in myeloid lineages of bone marrow. Strikingly, mice with restricted expression of 5-HT(2B) receptors in bone marrow cells developed hypoxia or monocrotaline-induced increase in pulmonary pressure and vascular remodeling, whereas restricted elimination of 5-HT(2B) receptors on bone marrow cells confers a complete resistance. Moreover, ex vivo culture of human CD34(+) or mice c-kit(+) progenitor cells in the presence of a 5-HT(2B) receptor antagonist resulted in altered myeloid differentiation potential. Thus, we demonstrate that activation of 5-HT(2B) receptors on bone marrow lineage progenitors is critical for the development of PAH.


Asunto(s)
Médula Ósea/fisiología , Hipertensión Pulmonar/genética , Receptor de Serotonina 5-HT2B/fisiología , Animales , Sangre/metabolismo , Análisis Químico de la Sangre , Médula Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/fisiología , Diferenciación Celular/genética , Células Cultivadas , Hipertensión Pulmonar Primaria Familiar , Femenino , Humanos , Hipertensión Pulmonar/sangre , Hipertensión Pulmonar/inmunología , Hipertensión Pulmonar/metabolismo , Pulmón/metabolismo , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Receptor de Serotonina 5-HT2B/genética , Receptor de Serotonina 5-HT2B/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA