Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 368: 63-71, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30796934

RESUMEN

Cannabidiol (CBD) is a natural compound with psychoactive therapeutic properties well described. Conversely, the immunological effects of CBD are still poorly explored. In this study, the potential anti-inflammatory effects and underlying mechanisms of CBD and its analog Dimethyl-Heptyl-Cannabidiol (DMH-CBD) were investigated using RAW 264.7 macrophages. CBD and DMH-CBD suppressed LPS-induced TNF production and NF-kB activity in a concentration-dependent manner. Both compounds reduced the NF-kB activity in a µM concentration range: CBD (IC50 = 15 µM) and DMH-CBD (IC50 = 38 µM). However, the concentrations of CBD that mediated NF-kB inhibition were similar to those that cause cytotoxicity (LC50 = 58 µM). Differently, DMH-CBD inhibited the NF-kB activation without cytotoxic effects at the same concentrations, although it provokes cytotoxicity at long-term exposure. The inhibitory action of the DMH-CBD on NF-kB activity was not related to the reduction in IkBα degradation or either p65 (NF-kB) translocation to the nucleus, although it decreased p38 MAP kinase phosphorylation. Additionally, 8-(3-Chlorostyryl) caffeine (CSC), an A2A antagonist, reversed the effect of DMH-CBD on NF-kB activity in a concentration-dependent manner. Collectively, our results demonstrated that CBD reduces NF-kB activity at concentrations intimately associated with those that cause cell death, whereas DMH-CBD decreases NF-kB activity at non-toxic concentrations in an A2A receptor dependent-manner.


Asunto(s)
Agonistas del Receptor de Adenosina A2/farmacología , Cannabidiol/análogos & derivados , Cannabidiol/farmacología , Macrófagos/efectos de los fármacos , FN-kappa B/metabolismo , Receptor de Adenosina A2A/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Agonistas del Receptor de Adenosina A2/toxicidad , Animales , Cannabidiol/química , Cannabidiol/toxicidad , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Concentración 50 Inhibidora , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Fosforilación , Células RAW 264.7 , Receptor de Adenosina A2A/metabolismo , Vías Secretoras , Transducción de Señal , Células THP-1 , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Molecules ; 19(5): 5692-703, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24802983

RESUMEN

Leishmaniasis is one of the World's most problematic diseases in developing countries. Traditional medicines to treat leishmaniasis have serious side effects, as well as significant parasite resistance problems. In this work, two alkaloids 1 and 2 were obtained from Corydalis govaniana Wall and seven alkaloids 3-9, were obtained from Erythrina verna. The structures of the compounds were confirmed by mass spectrometry and 1D- and 2D-NMR spectroscopy. The leishmanicidal activity of compounds 1-9 against Leishmania amazonensis was tested on promastigote forms and cytotoxicity against J774 (macrophage cell line) was assessed in vitro. Compound 1 showed potent activity (IC50 = 0.18 µg/mL), compared with the standard amphotericin B (IC50 = 0.20 µg/mL). The spirocyclic erythrina-alkaloids showed lower leishmanicidal activity than dibenzoquinolizine type alkaloids.


Asunto(s)
Alcaloides de Berberina/administración & dosificación , Erythrina/química , Leishmania/parasitología , Leishmaniasis/tratamiento farmacológico , Alcaloides/química , Alcaloides de Berberina/química , Línea Celular , Humanos , Leishmania/efectos de los fármacos , Leishmaniasis/parasitología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Pruebas de Sensibilidad Parasitaria , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química
3.
Sci Signal ; 14(679)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879603

RESUMEN

Production of the proinflammatory cytokine tumor necrosis factor (TNF) must be precisely regulated for effective host immunity without the induction of collateral tissue damage. Here, we showed that TNF production was driven by a spleen-liver axis in a rat model of systemic inflammation induced by bacterial lipopolysaccharide (LPS). Analysis of cytokine expression and secretion in combination with splenectomy and hepatectomy revealed that the spleen generated not only TNF but also factors that enhanced TNF production by the liver, the latter of which accounted for nearly half of the TNF secreted into the circulation. Using mass spectrometry-based lipidomics, we identified leukotriene B4 (LTB4) as a candidate blood-borne messenger in this spleen-liver axis. LTB4 was essential for spleen-liver communication in vivo, as well as for humoral signaling between splenic macrophages and Kupffer cells in vitro. LPS stimulated the splenic macrophages to secrete LTB4, which primed Kupffer cells to secrete more TNF in response to LPS in a manner dependent on LTB4 receptors. These findings provide a framework to understand how systemic inflammation can be regulated at the level of interorgan communication.


Asunto(s)
Leucotrieno B4 , Bazo , Animales , Inflamación , Lipopolisacáridos/toxicidad , Hígado , Ratas , Factor de Necrosis Tumoral alfa
4.
J Pharm Biomed Anal ; 131: 464-472, 2016 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-27686399

RESUMEN

Govaniadine (GOV) is an alkaloid isolated from Corydalis govaniana Wall. It has been reported to show a different number of biological activities including anti-urease, leishmanicidal and antinociceptive. The present study aims to characterize the GOV in vitro metabolism after incubation with rat and human liver microsomes (RLM and HLM, respectively) and to evaluate its pharmacokinetic properties. The identification of GOV metabolites was conducted by different mass analyzers: a micrOTOF II-ESI-ToF Bruker Daltonics® and an amaZon-SL ion trap (IT) Bruker Daltonics®. For the pharmacokinetic study of GOV in rats after intravenous administration, a LC-MS/MS method was developed and applied to. The analyses were performed using an Acquity UPLC® coupled to an Acquity TQD detector equipped with an ESI interface. The liver microsomal incubation resulted in new O-demethylated, di-hydroxylated and mono-hydroxylated compounds. Regarding the method validation, the calibration curve was linear over the concentration range of 2.5-3150.0ngmL-1, with a lower limit of quantitation (LLOQ) of 2.5ngmL-1. This method was successfully applied to a pharmacokinetic study. The profile was best fitted to a two-compartment model, the first phase with a high distribution rate constant (α) 0.139±0.086min-1, reflected by the short distribution half-life (t1/2α) 9.2±8.9min and the later one, with an elimination half-life (t1/2ß) 55.1±37.9min. The main plasma protein binding was 96.1%. This is a first report in this field and it will be useful for further development of govaniadine as a drug candidate.


Asunto(s)
Alcaloides/farmacocinética , Corydalis , Extractos Vegetales/farmacocinética , Terpenos/farmacocinética , Alcaloides/sangre , Alcaloides/aislamiento & purificación , Animales , Humanos , Extracción Líquido-Líquido/métodos , Masculino , Microsomas Hepáticos/metabolismo , Extractos Vegetales/sangre , Extractos Vegetales/aislamiento & purificación , Unión Proteica/fisiología , Ratas , Ratas Wistar , Terpenos/sangre , Terpenos/aislamiento & purificación
5.
Sci Rep ; 6: 33646, 2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27681015

RESUMEN

Piperlongumine (PPL), a natural plant product, has been extensively studied in cancer treatment going up on clinical trials. Since the first report related to its use on cancer research (in 2011) around 80 papers have been published in less than 10 years, but a gap still remaining. There are no metabolism studies of PPL in human organism. For the lack of a better view, here, the CYP450 in vitro oxidation of PPL was described for the first time. In addition, the enzymatic kinetic data, the predicted in vivo parameters, the produced metabolites, the phenotyping study and possible piperlongumine-drug interactions in vivo is presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA