Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 205, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810637

RESUMEN

Eukaryotes have canonical pathways for responding to amino acid (AA) availability. Under AA-limiting conditions, the TOR complex is repressed, whereas the sensor kinase GCN2 is activated. While these pathways have been highly conserved throughout evolution, malaria parasites are a rare exception. Despite auxotrophic for most AA, Plasmodium does not have either a TOR complex nor the GCN2-downstream transcription factors. While Ile starvation has been shown to trigger eIF2α phosphorylation and a hibernation-like response, the overall mechanisms mediating detection and response to AA fluctuation in the absence of such pathways has remained elusive. Here we show that Plasmodium parasites rely on an efficient sensing pathway to respond to AA fluctuations. A phenotypic screen of kinase knockout mutant parasites identified nek4, eIK1 and eIK2-the last two clustering with the eukaryotic eIF2α kinases-as critical for Plasmodium to sense and respond to distinct AA-limiting conditions. Such AA-sensing pathway is temporally regulated at distinct life cycle stages, allowing parasites to actively fine-tune replication and development in response to AA availability. Collectively, our data disclose a set of heterogeneous responses to AA depletion in malaria parasites, mediated by a complex mechanism that is critical for modulating parasite growth and survival.


Asunto(s)
Aminoácidos , Plasmodium , Aminoácidos/deficiencia , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Fosforilación , Fosfotransferasas/metabolismo , Plasmodium/enzimología , Plasmodium/genética
2.
Nat Microbiol ; 8(7): 1280-1292, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37277533

RESUMEN

For Plasmodium falciparum, the most widespread and virulent malaria parasite that infects humans, persistence depends on continuous asexual replication in red blood cells, while transmission to their mosquito vector requires asexual blood-stage parasites to differentiate into non-replicating gametocytes. This decision is controlled by stochastic derepression of a heterochromatin-silenced locus encoding AP2-G, the master transcription factor of sexual differentiation. The frequency of ap2-g derepression was shown to be responsive to extracellular phospholipid precursors but the mechanism linking these metabolites to epigenetic regulation of ap2-g was unknown. Through a combination of molecular genetics, metabolomics and chromatin profiling, we show that this response is mediated by metabolic competition for the methyl donor S-adenosylmethionine between histone methyltransferases and phosphoethanolamine methyltransferase, a critical enzyme in the parasite's pathway for de novo phosphatidylcholine synthesis. When phosphatidylcholine precursors are scarce, increased consumption of SAM for de novo phosphatidylcholine synthesis impairs maintenance of the histone methylation responsible for silencing ap2-g, increasing the frequency of derepression and sexual differentiation. This provides a key mechanistic link that explains how LysoPC and choline availability can alter the chromatin status of the ap2-g locus controlling sexual differentiation.


Asunto(s)
Malaria , Parásitos , Animales , Humanos , Parásitos/genética , Parásitos/metabolismo , Histonas/metabolismo , Diferenciación Sexual , Metilación , Epigénesis Genética , Malaria/parasitología , Cromatina , Fosfatidilcolinas , Fosfolípidos
3.
Nat Microbiol ; 2(12): 1600-1607, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28947801

RESUMEN

The relevance of genetic factors in conferring protection to severe malaria has been demonstrated, as in the case of sickle cell trait and G6PD deficiency 1 . However, it remains unknown whether environmental components, such as dietary or metabolic variations, can contribute to the outcome of infection 2 . Here, we show that administration of a high-fat diet to mice for a period as short as 4 days impairs Plasmodium liver infection by over 90%. Plasmodium sporozoites can successfully invade and initiate replication but die inside hepatocytes, thereby are unable to cause severe disease. Transcriptional analyses combined with genetic and chemical approaches reveal that this impairment of infection is mediated by oxidative stress. We show that reactive oxygen species, probably spawned from fatty acid ß-oxidation, directly impact Plasmodium survival inside hepatocytes, and parasite load can be rescued by exogenous administration of the antioxidant N-acetylcysteine or the ß-oxidation inhibitor etomoxir. Together, these data reveal that acute and transient dietary alterations markedly impact the establishment of a Plasmodium infection and disease outcome.


Asunto(s)
Dieta Alta en Grasa/métodos , Interacciones Huésped-Parásitos/genética , Malaria/dietoterapia , Acetilcisteína/metabolismo , Animales , Antioxidantes/metabolismo , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Deficiencia de Glucosafosfato Deshidrogenasa/metabolismo , Células Hep G2 , Hepatocitos/metabolismo , Hepatocitos/parasitología , Humanos , Hígado/metabolismo , Hígado/parasitología , Hepatopatías/metabolismo , Hepatopatías/parasitología , Macrófagos/parasitología , Macrófagos/patología , Malaria/sangre , Malaria/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Carga de Parásitos , Plasmodium berghei , Especies Reactivas de Oxígeno , Rasgo Drepanocítico/metabolismo , Esporozoítos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA