RESUMEN
Although the etiology of multiple sclerosis is not yet understood, it is accepted that its pathogenesis involves both autoimmune and neurodegenerative processes, in which the role of autoreactive T-cells has been elucidated. Instead, the contribution of humoral response is still unclear, even if the presence of intrathecal antibodies and B-cells follicle-like structures in meninges of patients has been demonstrated. Several myelin and non-myelin antigens have been identified, but none has been validated as humoral biomarker. In particular autoantibodies against myelin proteins have been found also in healthy individuals, whereas non-myelin antigens have been implicated in neurodegenerative phase of the disease. To provide further putative autoantigens of multiple sclerosis, we investigated the antigen specificity of immunoglobulins present both in sera and in cerebrospinal fluid of patients using phage display technology in a new improved format. A human brain cDNA phage display library was constructed and enriched for open-read-frame fragments. This library was selected against pooled and purified immunoglobulins from cerebrospinal fluid and sera of multiple sclerosis patients. The antigen library was also screened against an antibody scFv library obtained from RNA of B cells purified from the cerebrospinal fluid of two relapsing remitting patients. From all biopanning a complex of 14 antigens were identified; in particular, one of these antigens, corresponding to DDX24 protein, was present in all selections. The ability of more frequently isolated antigens to discriminate between sera from patients with multiple sclerosis or other neurological diseases was investigated. The more promising novel candidate autoantigens were DDX24 and TCERG1. Both are implicated in RNA modification and regulation which can be altered in neurodegenerative processes. Therefore, we propose that they could be a marker of a particular disease activity state.
Asunto(s)
ARN Helicasas DEAD-box/genética , Inmunoglobulina G/metabolismo , Esclerosis Múltiple Recurrente-Remitente/genética , Factores de Elongación Transcripcional/genética , Adulto , Anciano , Autoantígenos/genética , Autoantígenos/inmunología , Línea Celular , ARN Helicasas DEAD-box/inmunología , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/líquido cefalorraquídeo , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/sangre , Esclerosis Múltiple Recurrente-Remitente/líquido cefalorraquídeo , Sistemas de Lectura Abierta , Biblioteca de Péptidos , Factores de Elongación Transcripcional/inmunologíaRESUMEN
Procambarus clarkii is an invasive alien species spreading worldwide. It is therefore mandatory to find new methods to manage this species since traditional techniques are not sufficient for this purpose. The present study investigates gonad damage induced by different doses of ionising irradiation: 20, 40 and 60 Gy. Testis were analysed after 10 and 30 days by means of light, scanning and transmission electron microscopy. Control unirradiated testes present an acinar structure with a well-defined germinative cells maturation from the distal proliferative zone to the proximal stalk of the lobes whilst, in irradiated testes, induced apoptosis of germinative and accessory cells and a high level of vacuolisation inside the acini were identified, progressively increasing in accordance to Gy dosage and time after exposure. We determined the dose of 40 Gy as the best compromise: it causes an extensive damage to germinative tissues without affecting crayfish vitality, differing from 60 Gy. From an applicative point of view, this dose reduces the efforts, in terms of cost and time, for the application of SMRT.