Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Biophys J ; 122(18): 3646-3655, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37085995

RESUMEN

Imaging two or more fluorescent biosensors in the same living cell can reveal the spatiotemporal coordination of protein activities. However, using multiple Förster resonance energy transfer (FRET) biosensors together is challenging due to toxicity and the need for orthogonal fluorophores. Here we generate a biosensor component that binds selectively to the activated conformation of three different proteins. This enabled multiplexed FRET with fewer fluorophores, and reduced toxicity. We generated this MultiBinder (MB) reagent for the GTPases RhoA, Rac1, and Cdc42 by combining portions of the downstream effector proteins Pak1 and Rhotekin. Using FRET between mCherry on the MB and YPet or mAmetrine on two target proteins, the activities of any pair of GTPases could be distinguished. The MB was used to image Rac1 and RhoA together with a third, dye-based biosensor for Cdc42. Quantifying effects of biosensor combinations on the frequency, duration, and velocity of cell protrusions and retractions demonstrated reduced toxicity. Multiplexed imaging revealed signaling hierarchies between the three proteins at the cell edge where they regulate motility.


Asunto(s)
Técnicas Biosensibles , Proteína de Unión al GTP cdc42 , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Transducción de Señal , Transferencia Resonante de Energía de Fluorescencia/métodos , Extensiones de la Superficie Celular , Colorantes , Técnicas Biosensibles/métodos , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/metabolismo
2.
Nat Chem Biol ; 16(8): 826-833, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32424303

RESUMEN

Here we generate fluorescence resonance energy transfer biosensors for guanine exchange factors (GEFs) by inserting a fluorescent protein pair in a structural 'hinge' common to many GEFs. Fluorescent biosensors can map the activation of signaling molecules in space and time, but it has not been possible to quantify how different activation events affect one another or contribute to a specific cell behavior. By imaging the GEF biosensors in the same cells as red-shifted biosensors of Rho GTPases, we can apply partial correlation analysis to parse out the extent to which each GEF contributes to the activation of a specific GTPase in regulating cell movement. Through analysis of spontaneous cell protrusion events, we identify when and where the GEF Asef regulates the GTPases Cdc42 and Rac1 to control cell edge dynamics. This approach exemplifies a powerful means to elucidate the real-time connectivity of signal transduction networks.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Secuencia de Aminoácidos/genética , Técnicas Biosensibles/métodos , Unión Proteica/genética , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(4): 1267-1272, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30630946

RESUMEN

Rac1 activation is at the core of signaling pathways regulating polarized cell migration. So far, it has not been possible to directly explore the structural changes triggered by Rac1 activation at the molecular level. Here, through a multiscale imaging workflow that combines biosensor imaging of Rac1 dynamics with electron cryotomography, we identified, within the crowded environment of eukaryotic cells, a unique nanoscale architecture of a flexible, signal-dependent actin structure. In cell regions with high Rac1 activity, we found a structural regime that spans from the ventral membrane up to a height of ∼60 nm above that membrane, composed of directionally unaligned, densely packed actin filaments, most shorter than 150 nm. This unique Rac1-induced morphology is markedly different from the dendritic network architecture in which relatively short filaments emanate from existing, longer actin filaments. These Rac1-mediated scaffold assemblies are devoid of large macromolecules such as ribosomes or other filament types, which are abundant at the periphery and within the remainder of the imaged volumes. Cessation of Rac1 activity induces a complete and rapid structural transition, leading to the absence of detectable remnants of such structures within 150 s, providing direct structural evidence for rapid actin filament network turnover induced by GTPase signaling events. It is tempting to speculate that this highly dynamical nanoscaffold system is sensitive to local spatial cues, thus serving to support the formation of more complex actin filament architectures-such as those mandated by epithelial-mesenchymal transition, for example-or resetting the region by completely dissipating.


Asunto(s)
Citoesqueleto/metabolismo , Citosol/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Transición Epitelial-Mesenquimal/fisiología , GTP Fosfohidrolasas/metabolismo , Humanos , Ratones , Transducción de Señal/fisiología
4.
J Cell Sci ; 129(12): 2329-42, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27173494

RESUMEN

Haptotaxis is the process by which cells respond to gradients of substrate-bound cues, such as extracellular matrix proteins (ECM); however, the cellular mechanism of this response remains poorly understood and has mainly been studied by comparing cell behavior on uniform ECMs with different concentrations of components. To study haptotaxis in response to gradients, we utilized microfluidic chambers to generate gradients of the ECM protein fibronectin, and imaged the cell migration response. Lamellipodia are fan-shaped protrusions that are common in migrating cells. Here, we define a new function for lamellipodia and the cellular mechanism required for haptotaxis - differential actin and lamellipodial protrusion dynamics lead to biased cell migration. Modest differences in lamellipodial dynamics occurring over time periods of seconds to minutes are summed over hours to produce differential whole cell movement towards higher concentrations of fibronectin. We identify a specific subset of lamellipodia regulators as being crucial for haptotaxis. Numerous studies have linked components of this pathway to cancer metastasis and, consistent with this, we find that expression of the oncogenic Rac1 P29S mutation abrogates haptotaxis. Finally, we show that haptotaxis also operates through this pathway in 3D environments.


Asunto(s)
Quimiotaxis , Fibronectinas/farmacología , Seudópodos/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Animales , Quimiotaxis/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Adhesiones Focales/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Integrina beta1/metabolismo , Ratones , Modelos Biológicos , Transducción de Señal/efectos de los fármacos , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Familia-src Quinasas/metabolismo
5.
J Am Chem Soc ; 138(8): 2571-5, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26863024

RESUMEN

Biosensors that report endogenous protein activity in vivo can be based on environment-sensing fluorescent dyes. The dyes can be attached to reagents that bind selectively to a specific conformation of the targeted protein, such that binding leads to a fluorescence change. Dyes that are sufficiently bright for use at low, nonperturbing intracellular concentrations typically undergo changes in intensity rather than the shifts in excitation or emission maxima that would enable precise quantitation through ratiometric imaging. We report here mero199, an environment-sensing dye that undergoes a 33 nm solvent-dependent shift in excitation. The dye was used to generate a ratiometric biosensor of Cdc42 (CRIB199) without the need for additional fluorophores. CRIB199 was used in the same cell with a FRET sensor of Rac1 activation to simultaneously observe Cdc42 and Rac1 activity in cellular protrusions, indicating that Rac1 but not Cdc42 activity was reduced during tail retraction, and specific protrusions had reduced Cdc42 activity. A novel program (EdgeProps) used to correlate localized activation with cell edge dynamics indicated that Rac1 was specifically reduced during retraction.


Asunto(s)
Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Compuestos de Piridinio/química , Proteína de Unión al GTP cdc42/análisis , Proteína de Unión al GTP rac1/análisis , Fotoblanqueo
6.
Exp Cell Res ; 321(2): 109-22, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24333506

RESUMEN

Malignant astrocytomas are highly invasive into adjacent and distant regions of the normal brain. Rho GTPases are small monomeric G proteins that play important roles in cytoskeleton rearrangement, cell motility, and tumor invasion. In the present study, we show that the knock down of StarD13, a GTPase activating protein (GAP) for RhoA and Cdc42, inhibits astrocytoma cell migration through modulating focal adhesion dynamics and cell adhesion. This effect is mediated by the resulting constitutive activation of RhoA and the subsequent indirect inhibition of Rac. Using Total Internal Reflection Fluorescence (TIRF)-based Förster Resonance Energy Transfer (FRET), we show that RhoA activity localizes with focal adhesions at the basal surface of astrocytoma cells. Moreover, the knock down of StarD13 inhibits the cycling of RhoA activation at the rear edge of cells, which makes them defective in retracting their tail. This study highlights the importance of the regulation of RhoA activity in focal adhesions of astrocytoma cells and establishes StarD13 as a GAP playing a major role in this process.


Asunto(s)
Astrocitoma/patología , Movimiento Celular , Adhesiones Focales/metabolismo , Proteínas Supresoras de Tumor/fisiología , Proteína de Unión al GTP rhoA/metabolismo , Astrocitoma/genética , Astrocitoma/metabolismo , Adhesión Celular/efectos de los fármacos , Adhesión Celular/genética , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/genética , Proteínas Activadoras de GTPasa , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , ARN Interferente Pequeño/farmacología , Distribución Tisular/efectos de los fármacos , Distribución Tisular/genética , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/genética
7.
bioRxiv ; 2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36909627

RESUMEN

Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employed computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant RBD. These engineered proteins bound with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interacted with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicited sera with broad betacoronavirus reactivity and protected as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.

8.
Nat Commun ; 14(1): 7897, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036525

RESUMEN

Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employ computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant receptor binding domain. These engineered proteins bind with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interact with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicit sera with broad betacoronavirus reactivity and protect as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.


Asunto(s)
Anticuerpos Antivirales , SARS-CoV-2 , Humanos , Animales , Ratones , Epítopos , Epítopos Inmunodominantes , Péptidos , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes
9.
J Biol Chem ; 286(14): 12141-8, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21242305

RESUMEN

SmgGDS is an atypical guanine nucleotide exchange factor (GEF) that promotes both cell proliferation and migration and is up-regulated in several types of cancer. SmgGDS has been previously shown to activate a wide variety of small GTPases, including the Ras family members Rap1a, Rap1b, and K-Ras, as well as the Rho family members Cdc42, Rac1, Rac2, RhoA, and RhoB. In contrast, here we show that SmgGDS exclusively activates RhoA and RhoC among a large panel of purified GTPases. Consistent with the well known properties of GEFs, this activation is catalytic, and SmgGDS preferentially binds to nucleotide-depleted RhoA relative to either GDP- or GTPγS-bound forms. However, mutational analyses indicate that SmgGDS utilizes a distinct exchange mechanism compared with canonical GEFs and in contrast to known GEFs requires RhoA to retain a polybasic region for activation. A homology model of SmgGDS highlights an electronegative surface patch and a highly conserved binding groove. Mutation of either area ablates the ability of SmgGDS to activate RhoA. Finally, the in vitro specificity of SmgGDS for RhoA and RhoC is retained in cells. Together, these results indicate that SmgGDS is a bona fide GEF that specifically activates RhoA and RhoC through a unique mechanism not used by other Rho family exchange factors.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Western Blotting , Línea Celular , Cromatografía en Gel , Dicroismo Circular , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/genética , Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/genética
10.
Dev Cell ; 11(3): 273-4, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16950117

RESUMEN

Polarization of the C. elegans embryo depends on the sperm-contributed centrosome, which cues a retraction of the actomyosin cortex to the opposite end of the embryo by an unknown mechanism. New evidence reveals that the sperm donates a second polarizing cue that may locally relax the actomyosin cortex near the point of sperm entry.


Asunto(s)
Actomiosina/metabolismo , Tipificación del Cuerpo , Caenorhabditis elegans/embriología , Centrosoma/fisiología , Espermatozoides/fisiología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Masculino , Modelos Biológicos , Transducción de Señal
11.
Nat Cell Biol ; 5(10): 879-88, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12973357

RESUMEN

Eph receptor-ephrin signals are important for controlling repulsive and attractive cell movements during tissue patterning in embryonic development. However, the dynamic cellular responses to these signals at cell-cell contact sites are poorly understood. To examine these events we have used cell microinjection to express EphB4 and ephrinB2 in adjacent Swiss 3T3 fibroblasts and have studied the interaction of the injected cells using time-lapse microscopy. We show that Eph receptors are locally activated wherever neighbouring cells make contact. This triggers dynamic, Rac-regulated membrane ruffles at the Eph-ephrin contact sites. Subsequently, the receptor and ligand cells retract from one another, concomitantly with the endocytosis of the activated Eph receptors and their bound, full-length ephrinB ligands. Both the internalization of the receptor-ligand complexes and the subsequent cell retraction events are dependent on actin polymerization, which in turn is dependent on Rac signalling within the receptor-expressing cells. Similar events occur in primary human endothelial cells. Our findings suggest a novel mechanism for cell repulsion, in which the contact between Eph-expressing and ephrin-expressing cells is destabilized by the localized phagocytosis of the ligand-expressing cell plasma membrane by the receptor-expressing cell.


Asunto(s)
Adhesión Celular/fisiología , Comunicación Celular/fisiología , Endocitosis/fisiología , Efrina-B2/metabolismo , Receptor EphB4/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Células 3T3 , Actinas/metabolismo , Animales , Extensiones de la Superficie Celular/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Efrina-B2/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Ratones , Transducción de Señal/fisiología
12.
Front Cell Dev Biol ; 9: 685825, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490242

RESUMEN

The accuracy of biosensor ratio imaging is limited by signal/noise. Signals can be weak when biosensor concentrations must be limited to avoid cell perturbation. This can be especially problematic in imaging of low volume regions, e.g., along the cell edge. The cell edge is an important imaging target in studies of cell motility. We show how the division of fluorescence intensities with low signal-to-noise at the cell edge creates specific artifacts due to background subtraction and division by small numbers, and that simply improving the accuracy of background subtraction cannot address these issues. We propose a new approach where, rather than simply subtracting background from the numerator and denominator, we subtract a noise correction factor (NCF) from the numerator only. This NCF can be derived from the analysis of noise distribution in the background near the cell edge or from ratio measurements in the cell regions where signal-to-noise is high. We test the performance of the method first by examining two noninteracting fluorophores distributed evenly in cells. This generated a uniform ratio that could provide a ground truth. We then analyzed actual protein activities reported by a single chain biosensor for the guanine exchange factor (GEF) Asef, and a dual chain biosensor for the GTPase Cdc42. The reduction of edge artifacts revealed persistent Asef activity in a narrow band (∼640 nm wide) immediately adjacent to the cell edge. For Cdc42, the NCF method revealed an artifact that would have been obscured by traditional background subtraction approaches.

13.
Nat Commun ; 12(1): 6091, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34667203

RESUMEN

Physiological changes in GTP levels in live cells have never been considered a regulatory step of RAC1 activation because intracellular GTP concentration (determined by chromatography or mass spectrometry) was shown to be substantially higher than the in vitro RAC1 GTP dissociation constant (RAC1-GTP Kd). Here, by combining genetically encoded GTP biosensors and a RAC1 activity biosensor, we demonstrated that GTP levels fluctuating around RAC1-GTP Kd correlated with changes in RAC1 activity in live cells. Furthermore, RAC1 co-localized in protrusions of invading cells with several guanylate metabolism enzymes, including rate-limiting inosine monophosphate dehydrogenase 2 (IMPDH2), which was partially due to direct RAC1-IMPDH2 interaction. Substitution of endogenous IMPDH2 with IMPDH2 mutants incapable of binding RAC1 did not affect total intracellular GTP levels but suppressed RAC1 activity. Targeting IMPDH2 away from the plasma membrane did not alter total intracellular GTP pools but decreased GTP levels in cell protrusions, RAC1 activity, and cell invasion. These data provide a mechanism of regulation of RAC1 activity by local GTP pools in live cells.


Asunto(s)
Guanosina Trifosfato/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Membrana Celular/metabolismo , Movimiento Celular , Guanosina Trifosfato/química , Células HEK293 , Humanos , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/metabolismo , Cinética , Unión Proteica , Proteína de Unión al GTP rac1/química , Proteína de Unión al GTP rac1/genética
14.
Curr Opin Genet Dev ; 16(4): 392-8, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16782324

RESUMEN

Morphogenesis is the process by which multicellular organisms transform themselves from a ball of cells into an organized animal. Certain virtues of Caenorhabditis elegans make it an excellent model system for the study of this process: it is genetically tractable, develops as a transparent embryo with small cell-numbers, and yet still contains all the major tissues typical of animals. Furthermore, certain morphogenetic events are also amenable to study by direct manipulation of the cells involved. Given these advantages, it has been possible to use C. elegans to investigate the different ways in which the actin cytoskeleton drives the cellular rearrangements underlying morphogenesis, through regulated polymerization or actomyosin contraction. Recent insights from this system have determined the involvement in morphogenesis of key proteins, including the actin-regulating WASP and Ena proteins, potential guidance molecules such as the Eph and Robo receptors, and the cell-cell signaling proteins of the Wnt pathway.


Asunto(s)
Actinas/metabolismo , Caenorhabditis elegans/embriología , Morfogénesis/fisiología , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Movimiento Celular , Citoesqueleto/metabolismo , Modelos Animales , Transducción de Señal
15.
Methods Mol Biol ; 2173: 113-126, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32651913

RESUMEN

This chapter provides an overview of the technologies we have developed to control proteins with light. First, we focus on the LOV domain, a versatile building block with reversible photo-response, kinetics tunable through mutagenesis, and ready expression in a broad range of cells and animals. Incorporation of LOV into proteins produced a variety of approaches: simple steric block of the active site released when irradiation lengthened a linker (PA-GTPases), reversible release from sequestration at mitochondria (LOVTRAP), and Z-lock, a method in which a light-cleavable bridge is placed where it occludes the active site. The latter two methods make use of Zdk, small engineered proteins that bind selectively to the dark state of LOV. In order to control endogenous proteins, inhibitory peptides are embedded in the LOV domain where they are exposed only upon irradiation (PKA and MLCK inhibition). Similarly, controlled exposure of a nuclear localization sequence and nuclear export sequence is used to reversibly send proteins into the nucleus. Another avenue of engineering makes use of the heterodimerization of FKBP and FRB proteins, induced by the small molecule rapamycin. We control rapamycin with light or simply add it to target cells. Incorporation of fused FKBP-FRB into kinases, guanine exchange factors, or GTPases leads to rapamycin-induced protein activation. Kinases are engineered so that they can interact with only a specific substrate upon activation. Recombination of split proteins using rapamycin-induced conformational changes minimizes spontaneous reassembly. Finally, we explore the insertion of LOV or rapamycin-responsive domains into proteins such that light-induced conformational changes exert allosteric control of the active site. We hope these design ideas will inspire new applications and broaden our reach towards dynamic biological processes that unfold when studied in vivo.


Asunto(s)
Optogenética/métodos , Ingeniería de Proteínas/métodos , Animales , GTP Fosfohidrolasas/metabolismo , Modelos Biológicos , Unión Proteica/efectos de los fármacos , Sirolimus/farmacología , Proteínas de Unión a Tacrolimus/metabolismo
16.
Commun Biol ; 3(1): 470, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32843667

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Commun Biol ; 3(1): 390, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32694539

RESUMEN

Aligned extracellular matrix fibers enable fibroblasts to undergo myofibroblastic activation and achieve elongated shapes. Activated fibroblasts are able to contract, perpetuating the alignment of these fibers. This poorly understood feedback process is critical in chronic fibrosis conditions, including cancer. Here, using fiber networks that serve as force sensors, we identify "3D perpendicular lateral protrusions" (3D-PLPs) that evolve from lateral cell extensions named twines. Twines originate from stratification of cyclic-actin waves traversing the cell and swing freely in 3D to engage neighboring fibers. Once engaged, a lamellum forms and extends multiple secondary twines, which fill in to form a sheet-like PLP, in a force-entailing process that transitions focal adhesions to activated (i.e., pathological) 3D-adhesions. The specific morphology of PLPs enables cells to increase contractility and force on parallel fibers. Controlling geometry of extracellular networks confirms that anisotropic fibrous environments support 3D-PLP formation and function, suggesting an explanation for cancer-associated desmoplastic expansion.


Asunto(s)
Citoesqueleto/genética , Matriz Extracelular/genética , Adhesiones Focales/genética , Neoplasias/genética , Actinas/genética , Adhesión Celular/genética , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Miofibroblastos/metabolismo , Neoplasias/patología , Microambiente Tumoral/genética
18.
Curr Biol ; 16(20): 1986-97, 2006 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-17055977

RESUMEN

BACKGROUND: Embryonic patterning mechanisms regulate the cytoskeletal machinery that drives morphogenesis, but there are few cases where links between patterning mechanisms and morphogenesis are well understood. We have used a combination of genetics, in vivo imaging, and cell manipulations to identify such links in C. elegans gastrulation. Gastrulation in C. elegans begins with the internalization of endodermal precursor cells in a process that depends on apical constriction of ingressing cells. RESULTS: We show that ingression of the endodermal precursor cells is regulated by pathways, including a Wnt-Frizzled signaling pathway, that specify endodermal cell fate. We find that Wnt signaling has a role in gastrulation in addition to its earlier roles in regulating endodermal cell fate and cell-cycle timing. In the absence of Wnt signaling, endodermal precursor cells polarize and enrich myosin II apically but fail to contract their apical surfaces. We show that a regulatory myosin light chain normally becomes phosphorylated on the apical side of ingressing cells at a conserved site that can lead to myosin-filament formation and contraction of actomyosin networks and that this phosphorylation depends on Wnt signaling. CONCLUSIONS: We conclude that Wnt signaling regulates C. elegans gastrulation through regulatory myosin light-chain phosphorylation, which results in the contraction of the apical surface of ingressing cells. These findings forge new links between cell-fate specification and morphogenesis, and they represent a novel mechanism by which Wnt signaling can regulate morphogenesis.


Asunto(s)
Actomiosina/fisiología , Caenorhabditis elegans/embriología , Receptores Frizzled/metabolismo , Gástrula/fisiología , Morfogénesis/fisiología , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , Animales , Microscopía Fluorescente , Modelos Biológicos , Fosforilación , Interferencia de ARN
19.
J Cell Biol ; 218(9): 3077-3097, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31420453

RESUMEN

Rho family GTPases are activated with precise spatiotemporal control by guanine nucleotide exchange factors (GEFs). Guanine exchange factor H1 (GEF-H1), a RhoA activator, is thought to act as an integrator of microtubule (MT) and actin dynamics in diverse cell functions. Here we identify a GEF-H1 autoinhibitory sequence and exploit it to produce an activation biosensor to quantitatively probe the relationship between GEF-H1 conformational change, RhoA activity, and edge motion in migrating cells with micrometer- and second-scale resolution. Simultaneous imaging of MT dynamics and GEF-H1 activity revealed that autoinhibited GEF-H1 is localized to MTs, while MT depolymerization subadjacent to the cell cortex promotes GEF-H1 activation in an ~5-µm-wide peripheral band. GEF-H1 is further regulated by Src phosphorylation, activating GEF-H1 in a narrower band ~0-2 µm from the cell edge, in coordination with cell protrusions. This indicates a synergistic intersection between MT dynamics and Src signaling in RhoA activation through GEF-H1.


Asunto(s)
Microtúbulos/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal , Proteína de Unión al GTP rhoA/metabolismo , Familia-src Quinasas/metabolismo , Animales , Técnicas Biosensibles , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Microtúbulos/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Proteína de Unión al GTP rhoA/genética , Familia-src Quinasas/genética
20.
Methods Mol Biol ; 469: 103-11, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19109706

RESUMEN

Wnt signaling has been demonstrated to regulate diverse cell processes throughout the development of the Caenorhabditis elegans embryo. This chapter describes methods that have been used to investigate some of these Wnt-dependent processes: endoderm specification, mitotic spindle orientation, and cell migration.


Asunto(s)
Bioensayo/métodos , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/fisiología , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , Animales , Caenorhabditis elegans/anatomía & histología , Proteínas de Caenorhabditis elegans/genética , Polaridad Celular , Proteínas Wnt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA