Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Vet Res ; 16(1): 417, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33138803

RESUMEN

BACKGROUND: Canine colostrum milk (CCM) is a specific secretion of the mammary gland that is fundamental for the survival of the newborn. CCM has many described components (immunoglobulins, proteins or fat), but its small vesicles, named exosomes, are largely unknown. RESULTS: A characterization of CCM exosomes was performed. Exosomes were abundant in CCM and appeared with the characteristic cup-shaped morphology and well-defined round vesicles. The size distribution of exosomes was between 37 and 140 nm, and western blot analysis showed positive expression of specific exosomal markers. Proteomic analysis revealed a total of 826 proteins in exosome cargo. We also found that exosomes modified the proliferation and secretory profiles in canine mesenchymal stem cells derived from bone marrow (cBM-MSCs) and adipose tissue (cAd-MSCs). Additionally, CCM exosomes demonstrated a potent antioxidant effect on canine fibroblasts in culture. CONCLUSIONS: Our findings highlight, for the first time, the abundant presence of exosomes in CCM and their ability to interact with mesenchymal stem cells (MSCs). The addition of exosomes to two types of MSCs in culture resulted in specific secretory profiles with functions related to angiogenesis, migration and chemotaxis of immune cells. In particular, the cAd-MSCs secretory profile showed higher potential in adipose tissue development and neurogenesis, while cBM-MSC production was associated with immunity, cell mobilization and haematopoiesis. Finally, exosomes also presented antioxidant capacity on fibroblasts against reactive oxygen species activity within the cell, demonstrating their fundamental role in the development and maturation of dogs in the early stages of their life.


Asunto(s)
Calostro/química , Exosomas/química , Fibroblastos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Antioxidantes/metabolismo , Células de la Médula Ósea/metabolismo , Células Cultivadas , Perros , Femenino , Embarazo , Proteoma/análisis
4.
Front Immunol ; 15: 1385101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725998

RESUMEN

Background: Immunopathology in food allergy is characterized by an uncontrolled type 2 immune response and specific-IgE production. Recent studies have determined that group 2 innate lymphoid cells (ILC2) participate in the food allergy pathogenic mechanism and their severity. Our objective was to investigate the role of ILC2 in peach-allergic patients due to non-specific lipid transfer protein (Pru p 3) sensitization. Methods: The immune response in peripheral blood mononuclear cells was characterized in lipid transfer protein-allergic patients and healthy controls. We have analyzed the Pru p 3 uptake on ILC2, the expression of costimulatory molecules, and their involvement on the T-cell proliferative response and cytokine production under different experimental conditions: cytokines involved in group 2 innate lymphoid cell activation (IL-33 and IL-25), Pru p 3 as main food allergen, and the combination of both components (IL-33/IL-25+Pru p 3) using cell sorting, EliSpot, flow cytometry, and confocal microscopy. Results: Our results show that Pru p 3 allergen is taken up by group 2 innate lymphoid cells, regulating their costimulatory molecule expression (CD83 and HLA-DR) depending on the presence of Pru p 3 and its combination with IL-33/IL-25. The Pru p 3-stimulated ILC2 induced specific GATA3+Th2 proliferation and cytokine (IL-4, IL-5, and IL-13) production in lipid transfer protein-allergic patients in a cell contact-dependent manner with no changes in Tbet+Th1- and FOXP3+Treg cell differentiation. Conclusions: The results indicate that in lipid transfer protein-allergic patients, the responsible allergen, Pru p 3, interacts with group 2 innate lymphoid cells, promoting a Th2 cell response. Our results might be of interest in vivo, as they show a role of group 2 innate lymphoid cells as antigen-presenting cells, contributing to the development of food allergy. Consequently, group 2 innate lymphoid cells may be considered as potential therapeutic targets.


Asunto(s)
Antígenos de Plantas , Proteínas Portadoras , Hipersensibilidad a los Alimentos , Inmunidad Innata , Humanos , Hipersensibilidad a los Alimentos/inmunología , Femenino , Antígenos de Plantas/inmunología , Proteínas Portadoras/inmunología , Masculino , Adulto , Citocinas/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Proteínas de Plantas/inmunología , Activación de Linfocitos/inmunología , Adulto Joven , Persona de Mediana Edad
5.
Front Immunol ; 14: 1165852, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334360

RESUMEN

Introduction: Lipid transfer proteins (LTPs) are allergens found in a wide range of plant-foods. Specifically, Pru p 3, the major allergen of peach, is commonly responsible for severe allergic reactions. The need for new alternatives to conventional food allergy treatments, like restrictive diets, suggests allergen immunotherapy as a promising option. It has been demonstrated that sublingual immunotherapy (SLIT) with synthetic glycodendropeptides, such as D1ManPrup3, containing mannose and Pru p 3 peptides induced tolerance in mice and that the persistence of this effect depends on treatment dose (2nM or 5nM). Moreover, it produces changes associated with differential gene expression and methylation profile of dendritic cells, as well as phenotypical changes in regulatory T cells (Treg). However, there are no works addressing the study of epigenetic changes in terms of methylation in the cell subsets that sustain tolerant responses, Treg. Therefore, in this work, DNA methylation changes in splenic-Treg from Pru p 3 anaphylactic mice were evaluated. Methods: It was performed by whole genome bisulphite sequencing comparing SLIT-D1ManPrup3 treated mice: tolerant (2nM D1ManPrup3), desensitized (5nM D1ManPrup3), and sensitized but not treated (antigen-only), with anaphylactic mice. Results: Most of the methylation changes were found in the gene promoters from both SLIT-treated groups, desensitized (1,580) and tolerant (1,576), followed by the antigen-only (1,151) group. Although tolerant and desensitized mice showed a similar number of methylation changes, only 445 genes were shared in both. Remarkably, interesting methylation changes were observed on the promoter regions of critical transcription factors for Treg function like Stat4, Stat5a, Stat5b, Foxp3, and Gata3. In fact, Foxp3 was observed exclusively as hypomethylated in tolerant group, whereas Gata3 was only hypomethylated in the desensitized mice. Discussion: In conclusion, diverse D1ManPrup3 doses induce different responses (tolerance or desensitization) in mice, which are reflected by differential methylation changes in Tregs.


Asunto(s)
Anafilaxia , Hipersensibilidad a los Alimentos , Animales , Ratones , Linfocitos T Reguladores , Hipersensibilidad a los Alimentos/terapia , Anafilaxia/metabolismo , Alérgenos/metabolismo , Metilación de ADN , Factores de Transcripción Forkhead/metabolismo
6.
Viruses ; 14(6)2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35746618

RESUMEN

The feline calicivirus (FCV) causes infections in cats all over the world and seems to be related to a broad variety of clinical presentations, such as feline chronic gingivostomatitis (FCGS), a severe oral pathology in cats. Although its etiopathogeny is largely unknown, FCV infection is likely to be a main predisposing factor for developing this pathology. During recent years, new strategies for treating FCGS have been proposed, based on the use of mesenchymal stem cells (MSC) and their regenerative and immunomodulatory properties. The main mechanism of action of MSC seems to be paracrine, due to the secretion of many biomolecules with different biological functions (secretome). Currently, several pathologies in humans have been shown to be related to functional alterations of the patient's MSCs. However, the possible roles that altered MSCs might have in different diseases, including virus-mediated diseases, remain unknown. We have recently demonstrated that the exosomes produced by the adipose-tissue-derived MSCs (fAd-MSCs) from cats suffering from FCV-positive severe and refractory FCGS showed altered protein contents. Based on these findings, the goal of this work was to analyze the proteomic profile of the secretome produced by feline adipose-tissue-derived MSCs (fAd-MSCs) from FCV-positive patients with FCGS, in order to identify differences between them and to increase our knowledge of the etiopathogenesis of this disease. We used high-resolution mass spectrometry and functional enrichment analysis with Gene Ontology to compare the secretomes produced by the fAd-MSCs of healthy and calicivirus-positive FCGS cats. We found that the fAd-MSCs from cats with FCGS had an increased expression of pro-inflammatory cytokines and an altered proteomic profile compared to the secretome produced by cells from healthy cats. These findings help us gain insight on the roles of MSCs and their possible relation to FCGS, and may be useful for selecting specific biomarkers and for identifying new therapeutic targets.


Asunto(s)
Calicivirus Felino , Enfermedades de los Gatos , Células Madre Mesenquimatosas , Estomatitis , Animales , Enfermedades de los Gatos/terapia , Gatos , Flavina-Adenina Dinucleótido , Humanos , Proteómica
7.
PLoS One ; 17(2): e0264001, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35167620

RESUMEN

The role played by certain domestic species such as dogs as a translational model in comparative oncology shows great interest to develop new therapeutic strategies in brain tumors. Gliomas are a therapeutic challenge that represents the most common form of malignant primary brain tumors in humans and the second most common form in dogs. Gene-directed enzyme/prodrug therapy using adipose mesenchymal stem cells (Ad-MSCs) expressing the herpes simplex virus thymidine kinase (TK) has proven to be a promising alternative in glioblastoma therapy, through its capacity to migrate and home to the tumor and delivering local cytotoxicity avoiding other systemic administration. In this study, we demonstrate the possibility for canine Ad-MSCs (cAd-MSCs) to be genetically engineered efficiently with a lentiviral vector to express TK (TK-cAd-MSCs) and in combination with ganciclovir (GCV) prodrug demonstrated its potential antitumor efficacy in vitro and in vivo in a mice model with the human glioblastoma cell line U87. TK-cAd-MSCs maintained cell proliferation, karyotype stability, and MSCs phenotype. Genetic modification significantly affects its secretory profile, both the analyzed soluble factors and exosomes. TK-cAd-MSCs showed a high secretory profile of some active antitumor immune response cytokines and a threefold increase in the amount of secreted exosomes, with changes in their protein cargo. We also found that the prodrug protein is not released directly into the culture medium by TK-cAd-MSCs. We believe that our work provides new perspectives for glioblastoma gene therapy in dogs and a better understanding of this therapy in view of its possible implantation in humans.


Asunto(s)
Neoplasias Encefálicas/terapia , Ganciclovir/administración & dosificación , Glioblastoma/terapia , Herpes Simple/enzimología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Timidina Quinasa/genética , Animales , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Técnicas de Cocultivo , Perros , Ganciclovir/farmacología , Genes Transgénicos Suicidas , Terapia Genética , Glioblastoma/genética , Herpes Simple/genética , Humanos , Lentivirus/genética , Células Madre Mesenquimatosas/metabolismo , Ratones , Timidina Quinasa/metabolismo , Transducción Genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Front Immunol ; 13: 1094172, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36643916

RESUMEN

Introduction: Allergen-specific immunotherapy (AIT) is applied as treatment to rise tolerance in patients with food allergies. Although AIT is thoroughly used, the underlying epigenetic events related to tolerant induction are still unknown. Thus, we aim to investigate epigenetic changes that could be related to tolerance in dendritic cells (DCs) from anaphylactic mice to lipid transfer proteins, Pru p 3, in the context of a sublingual immunotherapy (SLIT) with a glycodendropeptide (D1ManPrup3) that has demonstrated tolerant or desensitization responses depending on the treatment dose. Methods: Changes in DNA methylation in CpG context were determined comparing Sensitized (Antigen-only) animals and two groups receiving SLIT with the D1ManPrup3 nanostructure (D1ManPrup3-SLIT): Tolerant (2nM D1ManPrup3) and Desensitized (5nM D1ManPrup3), against anaphylactic animals. DNA from lymph nodes-DCs were isolated and then, Whole Genome Bisulphite Sequencing was performed to analyze methylation. Results: Most differentially methylated regions were found on the area of influence of gene promoters (DMPRs). Compared to the Anaphylactic group, the highest value was found in Desensitized mice (n = 7,713 DMPRs), followed by Tolerant (n = 4,091 DMPRs) and Sensitized (n = 3,931 DMPRs) mice. Moreover, many of these epigenetic changes were found in genes involved in immune and tolerance responses (Il1b, Il12b, Il1a, Ifng, and Tnf) as shown by functional enrichment (DCs regulation, B cell-mediated immunity, and effector mechanisms). Discussion: In conclusion, different doses of D1ManPrup3-SLIT induce different DNA methylation changes, which are reflected in the induction of distinct responses, tolerance, or desensitization.


Asunto(s)
Anafilaxia , Hipersensibilidad a los Alimentos , Inmunoterapia Sublingual , Animales , Ratones , Metilación , Alérgenos , Desensibilización Inmunológica
9.
Animals (Basel) ; 11(2)2021 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-33498940

RESUMEN

Mesenchymal stem cells (MSCs) have been shown to have therapeutic efficacy in different complex pathologies in feline species. This effect is attributed to the secretion of a wide variety of bioactive molecules and extracellular vesicles, such as exosomes, with significant paracrine activity, encompassed under the concept of the secretome. However, at present, the exosomes from feline MSCs have not yet been studied in detail. The objective of this study is to analyze and compare the protein profiles of the secretome as a whole and its exosomal fraction from feline adipose-derived MSCs (fAd-MSCs). For this, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein-Protein Interaction Networks Functional Enrichment Analysis (STRING) were utilized. A total of 239 proteins were identified in the secretome, and 228 proteins specific to exosomes were identified, with a total of 133 common proteins. The proteins identified in the secretome were located in the extracellular regions and in the cytoplasm, while the exosomal proteins were located mainly in the membrane, cytoplasm and cytosol. Regarding function, in the secretome, proteins involved in different metabolic pathways, in pathways related to the immune system and the endocrine system and in the processing of proteins in the endoplasmic reticulum predominated. In contrast, proteins specific to exosomes were predominantly associated with endocytosis, cell junctions, platelet activation and other cell signaling pathways. The possible future use of the secretome, or some of its components, such as exosomes, would provide a non-cell-based therapeutic strategy for the treatment of different diseases that would avoid the drawbacks of cell therapy.

10.
Animals (Basel) ; 11(8)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34438923

RESUMEN

Feline chronic gingivostomatitis (FCGS) is a pathology with a complicated therapeutic approach and with a prevalence between 0.7 and 12%. Although the etiology of the disease is diverse, feline calicivirus infection is known to be a predisposing factor. To date, the available treatment helps in controlling the disease, but cannot always provide a cure, which leads to a high percentage of refractory animals. Mesenchymal stem cells (MSCs) play a pivotal role in the homeostasis and reparation of different tissues and have the ability to modulate the immune system responses. This ability is, in part, due to the capacity of exosomes to play a part in intercellular cell communication. However, the precise role of MSC-derived exosomes and their alterations in immunocompromised pathologies remains unknown, especially in veterinary patients. The goal of this work was to analyze the proteomic profile of feline adipose tissue-derived MSCs (fAd-MSCs) from calicivirus-positive FCGS patients, and to detect possible modifications of the exosomal cargo, to gain better knowledge of the disease's etiopathogenesis. Using high-resolution mass spectrometry and functional enrichment analysis with Gene Ontology, exosomes isolated from the fAd-MSCs of five healthy cats and five calicivirus-positive FCGS patients, were pooled and compared. The results showed that the fAd-MSCs from cats suffering from FCGS not only had a higher exosome production, but also their exosomes showed significant alterations in their proteomic profile. Eight proteins were exclusively found in the exosomes from the FCGS group, and five proteins could only be found in the exosomes from the healthy cats. When comparing the exosomal cargo between the two groups, significant upregulation of 17 and downregulation of 13 proteins were detected in the FCGS group compared to the control group. These findings shed light on new perspectives on the roles of MSCs and their relation to this disease, which may help in identifying new therapeutic targets and selecting specific biomarkers.

11.
PLoS One ; 15(12): e0244327, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33373367

RESUMEN

Limbal stem cells (LSCs) are a quiescent cell population responsible for the renewal of the corneal epithelium. Their deficiency is responsible for the conjunctivization of the cornea that is seen in different ocular pathologies, both in humans and in the canine species. The canine species represents an interesting preclinical animal model in ocular surface pathologies. However, the role of LSCs in physiological and pathological conditions in canine species is not well understood. Our objective was to characterize for the first time the soluble factors and the proteomic profile of the secretome and exosomes of canine LSCs (cLSCs). In addition, given the important role that fibroblasts play in the repair of the ocular surface, we evaluated the influence of the secretome and exosomes of cLSCs on their proliferation in vitro. Our results demonstrated a secretory profile of cLSCs with high concentrations of MCP-1, IL-8, VEGF-A, and IL-10, as well as significant production of exosomes. Regarding the proteomic profile, 646 total proteins in the secretome and 356 in exosomes were involved in different biological processes. Functionally, the cLSC secretome showed an inhibitory effect on the proliferation of fibroblasts in vitro, which the exosomes did not. These results open the door to new studies on the possible use of the cLSC secretome or some of its components to treat certain pathologies of the ocular surface in canine species.


Asunto(s)
Biomarcadores/metabolismo , Medios de Cultivo/análisis , Exosomas/metabolismo , Limbo de la Córnea/citología , Proteómica/métodos , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Quimiocina CCL2/metabolismo , Perros , Interleucina-10/metabolismo , Interleucina-8/metabolismo , Limbo de la Córnea/metabolismo , Células Madre/citología , Células Madre/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA