Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 589(7841): 287-292, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33268892

RESUMEN

Cardiovascular disease (CVD) is the leading cause of mortality in the world, with most CVD-related deaths resulting from myocardial infarction or stroke. The main underlying cause of thrombosis and cardiovascular events is atherosclerosis, an inflammatory disease that can remain asymptomatic for long periods. There is an urgent need for therapeutic and diagnostic options in this area. Atherosclerotic plaques contain autoantibodies1,2, and there is a connection between atherosclerosis and autoimmunity3. However, the immunogenic trigger and the effects of the autoantibody response during atherosclerosis are not well understood3-5. Here we performed high-throughput single-cell analysis of the atherosclerosis-associated antibody repertoire. Antibody gene sequencing of more than 1,700 B cells from atherogenic Ldlr-/- and control mice identified 56 antibodies expressed by in-vivo-expanded clones of B lymphocytes in the context of atherosclerosis. One-third of the expanded antibodies were reactive against atherosclerotic plaques, indicating that various antigens in the lesion can trigger antibody responses. Deep proteomics analysis identified ALDH4A1, a mitochondrial dehydrogenase involved in proline metabolism, as a target antigen of one of these autoantibodies, A12. ALDH4A1 distribution is altered during atherosclerosis, and circulating ALDH4A1 is increased in mice and humans with atherosclerosis, supporting the potential use of ALDH4A1 as a disease biomarker. Infusion of A12 antibodies into Ldlr-/- mice delayed plaque formation and reduced circulating free cholesterol and LDL, suggesting that anti-ALDH4A1 antibodies can protect against atherosclerosis progression and might have therapeutic potential in CVD.


Asunto(s)
1-Pirrolina-5-Carboxilato Deshidrogenasa/inmunología , Aterosclerosis/inmunología , Aterosclerosis/prevención & control , Autoanticuerpos/inmunología , Autoantígenos/inmunología , 1-Pirrolina-5-Carboxilato Deshidrogenasa/sangre , Animales , Aterosclerosis/sangre , Aterosclerosis/diagnóstico , Autoanticuerpos/sangre , Autoanticuerpos/genética , Autoantígenos/sangre , Autoinmunidad , Linfocitos B/inmunología , Biomarcadores/sangre , Colesterol/sangre , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Lipoproteínas LDL/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Placa Aterosclerótica/inmunología , Placa Aterosclerótica/patología , Placa Aterosclerótica/prevención & control , Proteómica , Receptores de LDL/deficiencia , Receptores de LDL/genética , Análisis de la Célula Individual
2.
FASEB J ; 38(3): e23447, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38329326

RESUMEN

We aimed to analyze sex-related differences in galectin-1 (Gal-1), a ß-galactoside-binding lectin, in aortic stenosis (AS) and its association with the inflammatory and fibrocalcific progression of AS. Gal-1 was determined in serum and aortic valves (AVs) from control and AS donors by western blot and immunohistochemistry. Differences were validated by ELISA and qPCR in AS samples. In vitro experiments were conducted in primary cultured valve interstitial cells (VICs). Serum Gal-1 was not different neither between control and AS nor between men and women. There was no association between circulating and valvular Gal-1 levels. The expression of Gal-1 in stenotic AVs was higher in men than women, even after adjusting for confounding factors, and was associated with inflammation, oxidative stress, extracellular matrix remodeling, fibrosis, and osteogenesis. Gal-1 (LGALS1) mRNA was enhanced within fibrocalcific areas of stenotic AVs, especially in men. Secretion of Gal-1 was up-regulated over a time course of 2, 4, and 8 days in men's calcifying VICs, only peaking at day 4 in women's VICs. In vitro, Gal-1 was associated with similar mechanisms to those in our clinical cohort. ß-estradiol significantly up-regulated the activity of an LGALS1 promoter vector and the secretion of Gal-1, only in women's VICs. Supplementation with rGal-1 prevented the effects elicited by calcific challenge including the metabolic shift to glycolysis. In conclusion, Gal-1 is up-regulated in stenotic AVs and VICs from men in association with inflammation, oxidative stress, matrix remodeling, and osteogenesis. Estrogens can regulate Gal-1 expression with potential implications in post-menopause women. Exogenous rGal-1 can diminish calcific phenotypes in both women and men.


Asunto(s)
Estenosis de la Válvula Aórtica , Calcinosis , Galectina 1 , Femenino , Humanos , Masculino , Estenosis de la Válvula Aórtica/metabolismo , Células Cultivadas , Galectina 1/genética , Galectina 1/metabolismo , Inflamación/metabolismo
3.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37445629

RESUMEN

Cardiovascular diseases (CVD) are a major cause of morbidity and mortality worldwide, accounting for more than 17 million deaths each year [...].


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Humanos , Causas de Muerte , Aterosclerosis/etiología , Morbilidad , Factores de Riesgo
4.
Eur J Vasc Endovasc Surg ; 63(5): 751-758, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35248436

RESUMEN

OBJECTIVE: Abdominal aortic aneurysm (AAA) is characterised by the presence of B cells and immunoglobulins in the aortic wall, mainly in the adventitia. Kappa (κ) and lambda (λ) free light chains (FLCs) are produced from B cells during immunoglobulin synthesis. This study investigated the presence and prognostic value of combined FLCs (cFLCs or summed κ and λ) in patients with AAA. METHODS: cFLCs were analysed by a turbidimetric specific assay in tissue conditioned media from AAA samples (n = 34) compared with healthy aortas (n = 34) from France and in plasma samples from patients with AAA (n = 434) and age matched controls (n = 104) selected from the Viborg Vascular (VIVA) AAA screening trial in Denmark. t test, logistic regression, and Cox regression were used to test whether plasma cFLCs serve as a marker for AAA presence and whether cFLCs were predictive of death, major adverse cardiovascular events (MACE), or major adverse lower limb events (MALE). RESULTS: Increased cFLC levels were detected in the AAA adventitial layer compared with the AAA medial layer and healthy media layer (13.65 ± 3.17 vs. 6.57 ± 1.01 vs. 0.49 ± 0.09 mg/L, respectively, p < .050). The upper tertile of plasma cFLCs was independently associated with AAA presence after correcting for confounders (odds ratio [OR] 7.596, 95% confidence intervals [CI] 3.117 - 18.513; p < .001). Of 434 patients with AAA, 89 (20.5%) died, 104 (24.0%) suffered MACE, and 63 (14.5%) suffered MALE, during a five year follow up. In univariable analysis, the cFLC upper tertile was associated with a higher risk of death, MACE, and MALE (p < .001 for all). After adjustment for confounders, cFLCs remained an independent predictor of all cause mortality (hazard ratio [HR] 4.310, 95% CI 2.157 - 8.609; p < .001), MACE (HR 2.153, 95% CI 1.218 - 3.804; p = .008), or MALE (HR 3.442, 95% CI 1.548 - 7.652; p = .002) for those in the upper tertile. CONCLUSION: Increased cFLCs are observed in adventitial tissue of patients with AAA, indicating local activation of B cells. Plasma cFLC levels are an independent predictor of death, MACE, and MALE in patients with AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , Aneurisma de la Aorta Abdominal/cirugía , Biomarcadores , Humanos , Cadenas Ligeras de Inmunoglobulina , Modelos Logísticos , Pronóstico , Factores de Riesgo
5.
Eur J Vasc Endovasc Surg ; 63(4): 648-656, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35307155

RESUMEN

OBJECTIVE: Peripheral arterial disease (PAD) is the most prevalent cardiovascular (CV) condition globally. Despite the high CV risk of PAD patients, no reliable predictors of adverse clinical evolution are yet available. In this regard, previous transcriptomic analyses revealed increased expression of calprotectin (S100A8/A9) and lipocalin-2 (LCN2) in circulating extracellular vesicles (EVs) of patients with PAD. The aim of this study was to determine the prognostic value of LCN2 and calprotectin for CV risk assessment in PAD. METHODS: LCN2 and the S100A9 subunit of calprotectin were examined in human femoral plaques by immunohistochemistry and qPCR. LCN2 and calprotectin were determined by ELISA in PAD (CHN cohort, n = 331, Fontaine II-IV, serum), and PAD diagnosed by population based screening (VIVA trial, n = 413, the majority Fontaine 0-I, plasma). Patients were followed up for a mean of four years, recording the primary outcomes; CV death or amputation in the CHN cohort and CV death or major lower limb events (MALE) in the VIVA population. Secondary outcomes were all cause death or amputation, and all cause death or MALE, respectively. RESULTS: LCN2 and S100A9 were detected in human plaques in regions rich in inflammatory cells. LCN2 and calprotectin levels were 70% and 64% lower in plasma than in serum. In the CHN cohort, high serum levels of LCN2 and calprotectin increased the risk of primary and secondary outcomes 5.6 fold (p < .001) and 1.8 fold (p = .034), respectively, after covariable adjustment. Similarly, elevated plasma levels of LCN2 and calprotectin increased by three fold the risk of primary and secondary outcomes (p < .001) in the VIVA cohort. Moreover, addition of the combined variable to basal models, considering clinically relevant risk factors, improved reclassification for the primary outcome in both cohorts (p ≤ .024). CONCLUSION: Combined assessment of the inflammatory biomarkers LCN2 and calprotectin might be useful for risk stratification in advanced and early PAD.


Asunto(s)
Complejo de Antígeno L1 de Leucocito , Enfermedad Arterial Periférica , Biomarcadores , Humanos , Lipocalina 2 , Enfermedad Arterial Periférica/cirugía , Pronóstico
6.
FASEB J ; 34(11): 14960-14976, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32924185

RESUMEN

Atherosclerosis is an inflammatory disease characterized by the accumulation of macrophages in the vessel wall. Macrophages depend on their polarization to exert either pro-inflammatory or anti-inflammatory effects. Macrophages of the anti-inflammatory phenotype express high levels of CD163, a scavenger receptor for the hemoglobin-haptoglobin complex. CD163 can also bind to the pro-inflammatory cytokine TWEAK. Using ApoE-deficient or ApoE/CD163 double-deficient mice we aim to investigate the involvement of CD163 in atherosclerosis development and its capacity to neutralize the TWEAK actions. ApoE/CD163 double-deficient mice displayed a more unstable plaque phenotype characterized by an increased lipid and macrophage content, plaque size, and pro-inflammatory cytokine expression. In vitro experiments demonstrated that the absence of CD163 in M2-type macrophages-induced foam cell formation through upregulation of CD36 expression. Moreover, exogenous TWEAK administration increased atherosclerotic lesion size, lipids, and macrophages content in ApoE-/- /CD163-/- compared with ApoE-/- /CD163+/+ mice. Treatment with recombinant CD163 was able to neutralize the proatherogenic effects of TWEAK in ApoE/CD163 double-deficient mice. Recombinant CD163 abolished the pro-inflammatory actions of TWEAK on vascular smooth muscle cells, decreasing NF-kB activation, cytokines and metalloproteinases expression, and macrophages migration. In conclusion, CD163-expressing macrophages serve as a protective mechanism to prevent the deleterious effects of TWEAK on atherosclerotic plaque development and progression.


Asunto(s)
Antígenos CD/fisiología , Antígenos de Diferenciación Mielomonocítica/fisiología , Aterosclerosis/patología , Citocina TWEAK/metabolismo , Células Espumosas/patología , Macrófagos/patología , Placa Aterosclerótica/patología , Receptores de Superficie Celular/fisiología , Animales , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Citocinas/metabolismo , Femenino , Células Espumosas/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Noqueados para ApoE , Placa Aterosclerótica/etiología , Placa Aterosclerótica/metabolismo
7.
J Lipid Res ; 55(6): 1066-76, 2014 06.
Artículo en Inglés | MEDLINE | ID: mdl-24729624

RESUMEN

ABCA1 is a major regulator of cellular cholesterol efflux and plasma HDL biogenesis. Even though the transcriptional activation of ABCA1 is well established, the posttranscriptional regulation of ABCA1 expression is poorly understood. Here, we investigate the potential contribution of the RNA binding protein (RBP) human antigen R (HuR) on the posttranscriptional regulation of ABCA1 expression. RNA immunoprecipitation assays demonstrate a direct interaction between HuR and ABCA1 mRNA. We found that HuR binds to the 3' untranslated region of ABCA1 and increases ABCA1 translation, while HuR silencing reduces ABCA1 expression and cholesterol efflux to ApoA1 in human hepatic (Huh-7) and monocytic (THP-1) cells. Interestingly, cellular cholesterol levels regulate the expression, intracellular localization, and interaction between HuR and ABCA1 mRNA. Finally, we found that HuR expression was significantly increased in macrophages from human atherosclerotic plaques, suggesting an important role for this RBP in controlling macrophage cholesterol metabolism in vivo. In summary, we have identified HuR as a novel posttranscriptional regulator of ABCA1 expression and cellular cholesterol homeostasis, thereby opening new avenues for increasing cholesterol efflux from atherosclerotic foam macrophages and raising circulat-ing HDL cholesterol levels.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/biosíntesis , Proteína 1 Similar a ELAV/metabolismo , Regulación de la Expresión Génica , Transportador 1 de Casete de Unión a ATP/genética , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Colesterol/genética , Colesterol/metabolismo , Proteína 1 Similar a ELAV/genética , Células Espumosas/metabolismo , Células Espumosas/patología , Homeostasis , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células THP-1
8.
J Cell Mol Med ; 18(4): 721-34, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24479820

RESUMEN

Clinical complications associated with atherosclerotic plaques arise from luminal obstruction due to plaque growth or destabilization leading to rupture. Tumour necrosis factor ligand superfamily member 12 (TNFSF12) also known as TNF-related weak inducer of apoptosis (TWEAK) is a proinflammatory cytokine that participates in atherosclerotic plaque development, but its role in plaque stability remains unclear. Using two different approaches, genetic deletion of TNFSF12 and treatment with a TWEAK blocking mAb in atherosclerosis-prone mice, we have analysed the effect of TWEAK inhibition on atherosclerotic plaques progression and stability. Mice lacking both TNFSF12 and Apolipoprotein E (TNFSF12(-/-) ApoE(-/-) ) exhibited a diminished atherosclerotic burden and lesion size in their aorta. Advanced atherosclerotic plaques of TNFSF12(-/-) ApoE(-/-) or anti-TWEAK treated mice exhibited an increase collagen/lipid and vascular smooth muscle cell/macrophage ratios compared with TNFSF12(+/+) ApoE(-/-) control mice, reflecting a more stable plaque phenotype. These changes are related with two different mechanisms, reduction of the inflammatory response (chemokines expression and secretion and nuclear factor kappa B activation) and decrease of metalloproteinase activity in atherosclerotic plaques of TNFSF12(-/-) ApoE(-/-) . A similar phenotype was observed with anti-TWEAK mAb treatment in TNFSF12(+/+) ApoE(-/-) mice. Brachiocephalic arteries were also examined since they exhibit additional features akin to human atherosclerotic plaques associated with instability and rupture. Features of greater plaque stability including augmented collagen/lipid ratio, reduced macrophage content, and less presence of lateral xanthomas, buried caps, medial erosion, intraplaque haemorrhage and calcium content were present in TNFSF12(-/-) ApoE(-/-) or anti-TWEAK treatment in TNFSF12(+/+) ApoE(-/-) mice. Overall, our data indicate that anti-TWEAK treatment has the capacity to diminish proinflamatory response associated with atherosclerotic plaque progression and to alter plaque morphology towards a stable phenotype.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Aterosclerosis/genética , Placa Aterosclerótica/genética , Factores de Necrosis Tumoral/genética , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Apolipoproteínas E/genética , Apoptosis/genética , Apoptosis/inmunología , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/inmunología , Aterosclerosis/patología , Citocina TWEAK , Humanos , Ratones , Ratones Noqueados , Miocitos del Músculo Liso/inmunología , Miocitos del Músculo Liso/patología , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/inmunología , Placa Aterosclerótica/patología , Inhibidores del Factor de Necrosis Tumoral , Factores de Necrosis Tumoral/inmunología
9.
Arterioscler Thromb Vasc Biol ; 33(3): 612-20, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23288170

RESUMEN

OBJECTIVE: High-mobility group box 1 (HMGB1), a DNA-binding cytokine expressed mainly by macrophages, contributes to lesion progression and chronic inflammation within atherosclerotic plaque. It has been suggested that different cytokines could regulate HMGB1 expression in monocytes. We have analyzed the effect of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) on HMGB1 expression both in vivo and in vitro. METHODS AND RESULTS: Expression of TWEAK and its receptor fibroblast growth factor-inducible 14 (Fn14) was positively correlated with HMGB1 in human carotid atherosclerotic plaques. TWEAK increased HMGB1 mRNA expression and protein secretion in human acute monocytic leukemia cell line cultured monocytes. TWEAK-mediated HMGB1 increase was only observed in M1 macrophages but not in M2 ones. These effects were reversed using blocking anti-Fn14 antibody or nuclear factor-kappa B and phosphotidylinositol-3 kinase inhibitors. TWEAK also increased monocyte chemoattractant protein-1 secretion in human acute monocytic leukemia cell line cells, an effect blocked with an HMGB1 small interfering RNA. Systemic TWEAK injection in ApoE(-/-) mice increased HMGB1 protein expression in the aortic root and mRNA expression in total aorta of ApoE(-/-) mice. Conversely, TWEAK-blocking antibodies diminished HMGB1 protein and mRNA expression compared with IgG-treated mice. CONCLUSIONS: Our results indicate that TWEAK can regulate expression and secretion of HMGB1 in monocytes/macrophages, participating in the inflammatory response associated with atherosclerotic plaque development.


Asunto(s)
Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Arterias Carótidas/metabolismo , Enfermedades de las Arterias Carótidas/metabolismo , Proteína HMGB1/metabolismo , Monocitos/metabolismo , Placa Aterosclerótica , Receptores del Factor de Necrosis Tumoral/metabolismo , Factores de Necrosis Tumoral/metabolismo , Anciano , Animales , Anticuerpos Neutralizantes/farmacología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/inmunología , Enfermedades de la Aorta/patología , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/patología , Arterias Carótidas/inmunología , Arterias Carótidas/patología , Enfermedades de las Arterias Carótidas/genética , Enfermedades de las Arterias Carótidas/inmunología , Enfermedades de las Arterias Carótidas/patología , Línea Celular Tumoral , Quimiocina CCL2/metabolismo , Citocina TWEAK , Modelos Animales de Enfermedad , Femenino , Proteína HMGB1/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Monocitos/efectos de los fármacos , Monocitos/inmunología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , ARN Mensajero/metabolismo , Proteínas Recombinantes/farmacología , Receptor de TWEAK , Transfección , Inhibidores del Factor de Necrosis Tumoral , Factores de Necrosis Tumoral/farmacología , Regulación hacia Arriba
10.
Arterioscler Thromb Vasc Biol ; 33(8): 2013-20, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23702661

RESUMEN

OBJECTIVE: To identify proteins related to intraluminal thrombus biological activities that could help to find novel pathological mechanisms and therapeutic targets for human abdominal aortic aneurysm (AAA). APPROACH AND RESULTS: Tissue-conditioned media from patients with AAA were analyzed by a mass spectrometry-based strategy using liquid chromatography coupled to tandem mass spectrometry. Global pathway analysis by Ingenuity software highlighted the presence of several circulating proteins, among them were proteins from the complement system. Complement C3 concentration and activation were assessed in plasma from AAA patients (small AAA, AAA diameter=3-5 cm and large AAA, AAA diameter >5 cm), showing decreased C3 levels and activation in large AAA patients. No association of a combination of single-nucleotide polymorphisms in complement genes between large and small AAA patients was observed. Intense extracellular C3 inmunostaining, along with C9, was observed in AAA thrombus. Analysis of C3 in AAA tissue homogenates and tissue-conditioned media showed increased levels of C3 in AAA thrombus, as well as proteolytic fragments (C3a/C3c/C3dg), suggesting its local deposition and activation. Finally, the functional role of local complement activation in polymorphonuclear (PMN) cell activation was tested, showing that C3 blockade by anti-C3 antibody was able to decrease thrombus-induced neutrophil chemotaxis and reactive oxygen species production. CONCLUSIONS: A decrease of systemic C3 concentration and activity in the later stages of AAA associated with local complement retention, consumption, and proteolysis in the thrombus could induce PMN chemotaxis and activation, playing a detrimental role in AAA progression.


Asunto(s)
Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/patología , Proteómica/métodos , Trombosis/metabolismo , Trombosis/patología , Anciano , Anciano de 80 o más Años , Aneurisma de la Aorta Abdominal/epidemiología , Autoanticuerpos/metabolismo , Quimiotaxis/fisiología , Cromatografía Liquida/métodos , Complemento C3/genética , Complemento C3/metabolismo , Complemento C9/genética , Complemento C9/metabolismo , Medios de Cultivo Condicionados/farmacología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neutrófilos/citología , Neutrófilos/metabolismo , Polimorfismo de Nucleótido Simple , Especies Reactivas de Oxígeno/metabolismo , Factores de Riesgo , Espectrometría de Masas en Tándem/métodos , Trombosis/epidemiología
11.
Ann Vasc Surg ; 28(7): 1642-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24632318

RESUMEN

BACKGROUND: Abdominal aortic aneurysms (AAAs) are currently followed with serial ultrasound or computed tomography scanning diameter measurements, but evidence shows that AAA expansion is mostly discontinuous and quite unpredictable in any given patient. A reliable predictive model of AAA growth and/or rupture risk could help individualize treatment, follow-up protocols, and cost-effectiveness. Our objective is to set a predictive model of short-term prospective AAA growth, after clinical, serologic, and anatomic data. METHODS: A prospective pilot cohort was designed. We recruited 96 consecutive, asymptomatic, infrarenal, atherosclerotic AAA patients. We registered clinical data (age, gender, cardiovascular risk factors, comorbidity, and statin intake), baseline aortic diameter, prospective 1-year AAA growth, and the concentration of metalloprotease-2, metalloprotease-9, cystatin C, α1-antitrypsin, myeloperoxidase, monocyte chemoattractant protein-1, homocysteine, D-dimer, plasmin-antiplasmin complex (PAP), and C-reactive protein in peripheral blood at the time of baseline assessment. With all these data, we elaborated predictive models for 1-year AAA growth assessed both as a continuous variable (mm/year) and a dichotomic one (defined as stability, if AAA growth rate was ≤2 mm/year, versus expansion, if AAA growth rate was >2 mm/year), using simple and multiple linear and logistic regression. RESULTS: The multivariate model confirmed the independent impact of D-dimer levels and chronic renal failure (CRF) on increasing AAA growth rates. Every increase by 1 ng/mL in the plasma concentration of D-dimer was related to a mean 1-year increase of 0.0062 mm in the AAA growth. Likewise, CRF increased the 1-year prospective AAA growth by a mean of 2.95 mm. When we assessed AAA growth as a dichotomic variable, the increase in the peripheral concentrations of PAP slightly increased the risk of AAA expansion (odds ratio [OR]: 1.01; 95% confidence interval [CI]: 1.00-1.02), but the presence of CRF increased the risk dramatically (OR: 14,523.62; 95% CI: 0-7.39E+40). CONCLUSIONS: Plasma D-dimer and PAP levels seem promising biomarkers of short-term AAA activity. CRF is an important independent prognostic factor of AAA expansion. The dichotomic classification of AAA growth, as stability versus progression, can be useful in the development of management models and their clinical application.


Asunto(s)
Aneurisma de la Aorta Abdominal/sangre , Aneurisma de la Aorta Abdominal/patología , Biomarcadores/sangre , Anciano , Comorbilidad , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Proyectos Piloto , Valor Predictivo de las Pruebas , Estudios Prospectivos , Factores de Riesgo
12.
Trends Mol Med ; 30(2): 178-196, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142190

RESUMEN

Protein glycosylation controls cell-cell and cell-extracellular matrix (ECM) communication in immune, vascular, and inflammatory processes, underlining the critical role of this process in the identification of disease biomarkers and the design of novel therapies. Emerging evidence highlights the critical role of blood cell glycosylation in the pathophysiology of atherosclerosis (ATH) and myocardial infarction (MI). Here, we review the role of glycosylation in the interplay between blood cells, particularly erythrocytes, and endothelial cells (ECs), highlighting the involvement of this critical post/cotranslational modification in settings of cardiovascular disease (CVD). Importantly, we focus on emerging preclinical studies and clinical trials based on glycan-targeted drugs to validate their therapeutic potential. These findings may help establish new trends in preventive medicine and delineate novel targeted therapies in CVD.


Asunto(s)
Aterosclerosis , Infarto del Miocardio , Humanos , Glicosilación , Células Endoteliales/metabolismo , Infarto del Miocardio/etiología , Infarto del Miocardio/metabolismo , Aterosclerosis/metabolismo , Células Sanguíneas
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167327, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945455

RESUMEN

The prevalence of cardiovascular diseases (CVDs) is increasing in the last decades, even is the main cause of death in first world countries being atherosclerosis one of the principal triggers. Therefore, there is an urgent need to decipher the underlying mechanisms involved in atherosclerosis progression. In this respect, microRNAs dysregulation is frequently involved in the progression of multiple diseases including CVDs. Our aim was to demonstrate that let-7d-5p unbalance could contribute to the pathophysiology of atherosclerosis and serve as a potential diagnostic biomarker. We evaluated let-7d-5p levels in vascular biopsies and exosome-enriched extracellular vesicles (EVs) from patients with carotid atherosclerosis and healthy donors. Moreover, we overexpressed let-7d-5p in vitro in vascular smooth muscle cells (VSMCs) to decipher the targets and the underlying mechanisms regulated by let-7d-5p in atherosclerosis. Our results demonstrate that let-7d-5p was significantly upregulated in carotid plaques from overweight patients with carotid atherosclerosis. Moreover, in EVs isolated from plasma, we found that let-7d-5p levels were increased in carotid atherosclerosis patients compared to control subjects specially in overweight patients. Receiver Operating Characteristic (ROC) analyses confirmed its utility as a diagnostic biomarker for atherosclerosis. In VSMCs, we demonstrated that increased let-7d-5p levels impairs cell proliferation and could serve as a protective mechanism against inflammation by impairing NF-κB pathway without affecting insulin resistance. In summary, our results highlight the role of let-7d-5p as a potential therapeutic target for atherosclerosis since its overexpression induce a decrease in inflammation and VSMCs proliferation, and also, as a novel non-invasive diagnostic biomarker for atherosclerosis in overweight patients.

14.
Front Cardiovasc Med ; 10: 1112430, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37034348

RESUMEN

Aortic aneurysms, including abdominal aortic aneurysms (AAAs), is the second most prevalent aortic disease and represents an important cause of death worldwide. AAA is a permanent dilation of the aorta on its infrarenal portion, pathologically associated with oxidative stress, proteolysis, vascular smooth muscle cell loss, immune-inflammation, and extracellular matrix remodeling and degradation. Most epidemiological studies have shown a potential protective role of diabetes mellitus (DM) on the prevalence and incidence of AAA. The effect of DM on AAA might be explained mainly by two factors: hyperglycemia [or other DM-related factors such as insulin resistance (IR)] and/or by the effect of prescribed DM drugs, which may have a direct or indirect effect on the formation and progression of AAAs. However, recent studies further support that the protective role of DM in AAA may be attributable to antidiabetic therapies (i.e.: metformin or SGLT-2 inhibitors). This review summarizes current literature on the relationship between DM and the incidence, progression, and rupture of AAAs, and discusses the potential cellular and molecular pathways that may be involved in its vascular effects. Besides, we provide a summary of current antidiabetic therapies which use could be beneficial for AAA.

15.
Clin Transl Med ; 13(8): e1363, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37605307

RESUMEN

BACKGROUND: Cardiovascular diseases (CVDs) prevalence has significantly increased in the last decade and atherosclerosis development is the main trigger. MicroRNAs (miRNAs) are non-coding RNAs that negatively regulate gene expression of their target and their levels are frequently altered in CVDs. METHODS: By RT-qPCR, we analysed miR-9-5p, miR-15a-5p, miR-16-5p and miR-199a-3p levels in aorta from apolipoprotein knockout (ApoE-/- ) mice, an experimental model of hyperlipidemia-induced atherosclerosis, and in human aortic and carotid atherosclerotic samples. By in silico studies, Western blot analysis and immunofluorescence studies, we detected the targets of the altered miRNAs. RESULTS: Our results show that miR-15a-5p and miR-199a-3p are significantly decreased in carotid and aortic samples from patients and mice with atherosclerosis. In addition, we found an increased expression in targets of both miRNAs that participate in the inflammatory pathway of nuclear factor kappa B (NF-κB), such as IKKα, IKKß and p65. In human vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs), the overexpression of miR-15a-5p or miR-199a-3p decreased IKKα, IKKß and p65 protein levels as well as NF-κB activation. On the other hand, miR-15a-5p and miR-199a-3p overexpression reduced ox-LDL uptake and the inflammation regulated by NF-κB in VSMCs. Moreover, although miR-15a-5p and miR-199a-3p were significantly increased in exosomes from patients with advanced carotid atherosclerosis, only in the ROC analyses for miR-15a-5p, the area under the curve was 0.8951 with a p value of .0028. CONCLUSIONS: Our results suggest that the decrease of miR-199a-3p and miR-15a-5p in vascular samples from human and experimental atherosclerosis could be involved in the NF-κB activation pathway, as well as in ox-LDL uptake by VSMCs, contributing to inflammation and progression atherosclerosis. Finally, miR-15a-5p could be used as a novel diagnostic biomarker for advanced atherosclerosis.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , MicroARNs , Humanos , Animales , Ratones , Quinasa I-kappa B , FN-kappa B/genética , Células Endoteliales , MicroARNs/genética , Aterosclerosis/genética , Proteínas Serina-Treonina Quinasas
16.
Arterioscler Thromb Vasc Biol ; 31(4): 935-43, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21273562

RESUMEN

OBJECTIVE: In the search of novel biomarkers of abdominal aortic aneurysm (AAA) progression, proteins released by intraluminal thrombus (ILT) were analyzed by a differential proteomic approach. METHODS AND RESULTS: Different layers (luminal/abluminal) of the ILT of AAA were incubated, and the proteins released were analyzed by 2-dimensional difference in-gel electrophoresis. Several differentially expressed proteins involved in main AAA pathological mechanisms (proteolysis, oxidative stress, and thrombosis) were identified by mass spectrometry. Among the proteins identified, peroxiredoxin-1 (PRX-1) was more released by the luminal layer compared with the abluminal layer of the ILT, which was further validated by Western blot, ELISA, and immunohistochemistry. We demonstrated increased PRX-1 serum levels in AAA patients compared with healthy subjects and also positive correlation among PRX-1 and AAA diameter, plasmin-antiplasmin, and myeloperoxidase levels. Finally, a prospective study revealed a positive correlation between PRX-1 serum levels and AAA expansion rate. Moreover, the combination of PRX-1 and AAA size had significantly additive value in predicting growth. CONCLUSIONS: Several proteins associated with AAA pathogenesis have been identified by a proteomic approach in ILT-conditioned medium. Among them, PRX-1 serum levels are increased in AAA patients and correlate with AAA size and growth rate, suggesting the potential use of PRX-1 as a biomarker for AAA evolution.


Asunto(s)
Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/metabolismo , Peroxirredoxinas/metabolismo , Anciano , Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Biomarcadores/metabolismo , Western Blotting , Estudios de Casos y Controles , Distribución de Chi-Cuadrado , Dinamarca , Progresión de la Enfermedad , Electroforesis en Gel Bidimensional , Ensayo de Inmunoadsorción Enzimática , Eritrocitos/metabolismo , Humanos , Inmunohistoquímica , Masculino , Estrés Oxidativo , Peroxirredoxinas/sangre , Estudios Prospectivos , Proteómica/métodos , Curva ROC , España , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Ultrasonografía , Regulación hacia Arriba
17.
Front Cell Dev Biol ; 10: 1000760, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313572

RESUMEN

Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide. The main cause underlying CVD is associated with the pathological remodeling of the vascular wall, involving several cell types, including endothelial cells, vascular smooth muscle cells, and leukocytes. Vascular remodeling is often related with the development of atherosclerotic plaques leading to narrowing of the arteries and reduced blood flow. Atherosclerosis is known to be triggered by high blood cholesterol levels, which in the presence of a dysfunctional endothelium, results in the retention of lipoproteins in the artery wall, leading to an immune-inflammatory response. Continued hypercholesterolemia and inflammation aggravate the progression of atherosclerotic plaque over time, which is often complicated by thrombus development, leading to the possibility of CV events such as myocardial infarction or stroke. Annexins are a family of proteins with high structural homology that bind phospholipids in a calcium-dependent manner. These proteins are involved in several biological functions, from cell structural organization to growth regulation and vesicle trafficking. In vitro gain- or loss-of-function experiments have demonstrated the implication of annexins with a wide variety of cellular processes independent of calcium signaling such as immune-inflammatory response, cell proliferation, migration, differentiation, apoptosis, and membrane repair. In the last years, the use of mice deficient for different annexins has provided insight into additional functions of these proteins in vivo, and their involvement in different pathologies. This review will focus in the role of annexins in CVD, highlighting the mechanisms involved and the potential therapeutic effects of these proteins.

18.
Cell Rep ; 41(2): 111468, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36223741

RESUMEN

Atherosclerosis is a chronic inflammatory disease of the arteries that can lead to thrombosis, infarction, and stroke and is the leading cause of mortality worldwide. Immunization of pro-atherogenic mice with malondialdehyde-modified low-density lipoprotein (MDA-LDL) neo-antigen is athero-protective. However, the immune response to MDA-LDL and the mechanisms responsible for this athero-protection are not completely understood. Here, we find that immunization of mice with MDA-LDL elicits memory B cells, plasma cells, and switched anti-MDA-LDL antibodies as well as clonal expansion and affinity maturation, indicating that MDA-LDL triggers a bona fide germinal center antibody response. Further, Prdm1fl/flAicda-Cre+/kiLdlr-/- pro-atherogenic chimeras, which lack germinal center-derived plasma cells, show accelerated atherosclerosis. Finally, we show that MDA-LDL immunization is not athero-protective in mice lacking germinal-center-derived plasma cells. Our findings give further support to the development of MDA-LDL-based vaccines for the prevention or treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , Vacunas , Animales , Formación de Anticuerpos , Aterosclerosis/prevención & control , Centro Germinal , Lipoproteínas LDL , Malondialdehído/farmacología , Ratones , Vacunación
19.
Sci Adv ; 8(11): eabm7322, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35294231

RESUMEN

Pathological vascular remodeling is the underlying cause of atherosclerosis and abdominal aortic aneurysm (AAA). Here, we analyzed the role of galectin-1 (Gal-1), a ß-galactoside-binding protein, as a therapeutic target for atherosclerosis and AAA. Mice lacking Gal-1 (Lgals1-/-) developed severe atherosclerosis induced by pAAV/D377Y-mPCSK9 adenovirus and displayed higher lipid levels and lower expression of contractile markers of vascular smooth muscle cells (VSMCs) in plaques than wild-type mice. Proteomic analysis of Lgals1-/- aortas showed changes in markers of VSMC phenotypic switch and altered composition of mitochondrial proteins. Mechanistically, Gal-1 silencing resulted in increased foam cell formation and mitochondrial dysfunction in VSMCs, while treatment with recombinant Gal-1 (rGal-1) prevented these effects. Furthermore, rGal-1 treatment attenuated atherosclerosis and elastase-induced AAA, leading to higher contractile VSMCs in aortic tissues. Gal-1 expression decreased in human atheroma and AAA compared to control tissue. Thus, Gal-1-driven circuits emerge as potential therapeutic strategies in atherosclerosis and AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , Aterosclerosis , Animales , Aneurisma de la Aorta Abdominal/etiología , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/patología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Modelos Animales de Enfermedad , Galectina 1/genética , Galectina 1/metabolismo , Galectina 1/farmacología , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Proteómica , Remodelación Vascular
20.
J Proteome Res ; 10(3): 1374-82, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21166478

RESUMEN

Abdominal aortic aneurysm (AAA) is perma-nent and localized dilation of the abdominal aorta. Intraluminal thrombus (ILT) is involved in evolution and rupture of AAA. Complex biological processes associated with AAA include oxidative stress, proteolysis, neovascularization, aortic inflammation, cell death, and extracellular matrix breakdown. Biomarkers of growth and AAA rupture could give a more nuanced indication for surgery, unveil novel pathogenic pathways, and open possibilities for pharmacological inhibition of growth. Differential analysis of metabolites released by normal and pathological arteries in culture may help to find molecules that have a high probability of later being found in plasma and start signaling processes or be useful diagnostic/prognostic markers. We used a LC-QTOF-MS metabolomic approach to analyze metabolites released by human ILT (divided into luminal and abluminal layers), aneurysm wall (AW), and healthy wall (HW). Statistical analysis was used to compare luminal with abluminal ILT layer, ILT with AW, and AW with HW to select the metabolites exchanged between tissue and external medium. Identified compounds are related to inflammation and oxidative stress and indicate the possible role of fatty acid amides in AAA. Some metabolites (e.g., hippuric acid) had not been previously associated to aneurysm, others (fatty acid amides) have arisen, indicating a very promising line of research.


Asunto(s)
Aneurisma de la Aorta Abdominal/metabolismo , Aterosclerosis/metabolismo , Metabolómica/métodos , Amidas/química , Amidas/metabolismo , Aneurisma de la Aorta Abdominal/patología , Aterosclerosis/patología , Biomarcadores/análisis , Biomarcadores/sangre , Cromatografía Liquida/métodos , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Humanos , Análisis de los Mínimos Cuadrados , Estructura Molecular , Espectrometría de Masa por Ionización de Electrospray/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA