Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 30: 647-75, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25288119

RESUMEN

Mouse embryonic stem (ES) cells perpetuate in vitro the broad developmental potential of naïve founder cells in the preimplantation embryo. ES cells self-renew relentlessly in culture but can reenter embryonic development seamlessly, differentiating on schedule to form all elements of the fetus. Here we review the properties of these remarkable cells. Arising from the stability, homogeneity, and equipotency of ES cells, we consider the concept of a pluripotent ground state. We evaluate the authenticity of ES cells in relation to cells in the embryo and examine their utility for dissecting mechanisms that confer pluripotency and that execute fate choice. We summarize current knowledge of the transcription factor circuitry that governs the ES cell state and discuss the opportunity to expose molecular logic further through iterative computational modeling and experimentation. Finally, we present a perspective on unresolved questions, including the challenge of deriving ground state pluripotent stem cells from non-rodent species.


Asunto(s)
Células Madre Embrionarias/citología , Animales , División Celular Asimétrica , Blastocisto/citología , Técnicas de Cultivo de Célula , Linaje de la Célula , Células Cultivadas , Reprogramación Celular , Técnicas de Cocultivo , Medios de Cultivo , Medio de Cultivo Libre de Suero , Células Madre de Carcinoma Embrionario/citología , Células Madre Embrionarias/fisiología , Fibroblastos/citología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Estratos Germinativos/citología , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Factor Inhibidor de Leucemia/fisiología , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Factores de Transcripción/farmacología , Factores de Transcripción/fisiología
2.
EMBO Rep ; 24(4): e55235, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36847616

RESUMEN

In human embryos, naive pluripotent cells of the inner cell mass (ICM) generate epiblast, primitive endoderm and trophectoderm (TE) lineages, whence trophoblast cells derive. In vitro, naive pluripotent stem cells (PSCs) retain this potential and efficiently generate trophoblast stem cells (TSCs), while conventional PSCs form TSCs at low efficiency. Transient histone deacetylase and MEK inhibition combined with LIF stimulation is used to chemically reset conventional to naive PSCs. Here, we report that chemical resetting induces the expression of both naive and TSC markers and of placental imprinted genes. A modified chemical resetting protocol allows for the fast and efficient conversion of conventional PSCs into TSCs, entailing shutdown of pluripotency genes and full activation of the trophoblast master regulators, without induction of amnion markers. Chemical resetting generates a plastic intermediate state, characterised by co-expression of naive and TSC markers, after which cells steer towards one of the two fates in response to the signalling environment. The efficiency and rapidity of our system will be useful to study cell fate transitions and to generate models of placental disorders.


Asunto(s)
Células Madre Pluripotentes , Trofoblastos , Humanos , Femenino , Embarazo , Trofoblastos/metabolismo , Activación Transcripcional , Placenta , Diferenciación Celular
3.
Cell ; 141(7): 1195-207, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20603000

RESUMEN

Although specific microRNAs (miRNAs) can be upregulated in cancer, global miRNA downregulation is a common trait of human malignancies. The mechanisms of this phenomenon and the advantages it affords remain poorly understood. Here we identify a microRNA family, miR-103/107, that attenuates miRNA biosynthesis by targeting Dicer, a key component of the miRNA processing machinery. In human breast cancer, high levels of miR-103/107 are associated with metastasis and poor outcome. Functionally, miR-103/107 confer migratory capacities in vitro and empower metastatic dissemination of otherwise nonaggressive cells in vivo. Inhibition of miR-103/107 opposes migration and metastasis of malignant cells. At the cellular level, a key event fostered by miR-103/107 is induction of epithelial-to-mesenchymal transition (EMT), attained by downregulating miR-200 levels. These findings suggest a new pathway by which Dicer inhibition drifts epithelial cancer toward a less-differentiated, mesenchymal fate to foster metastasis.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Metástasis de la Neoplasia/genética , Ribonucleasa III/genética , Animales , Neoplasias de la Mama/diagnóstico , Línea Celular Tumoral , Movimiento Celular , Regulación hacia Abajo , Femenino , Humanos , Ratones , Pronóstico
4.
Development ; 148(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34473253

RESUMEN

The STAT3 transcription factor, acting both in the nucleus and mitochondria, maintains embryonic stem cell pluripotency and promotes their proliferation. In this work, using zebrafish, we determined in vivo that mitochondrial STAT3 regulates mtDNA transcription in embryonic and larval stem cell niches and that this activity affects their proliferation rates. As a result, we demonstrated that import of STAT3 inside mitochondria requires Y705 phosphorylation by Jak, whereas its mitochondrial transcriptional activity, as well as its effect on proliferation, depends on the MAPK target S727. These data were confirmed using mouse embryonic stem cells: although the Y705-mutated STAT3 cannot enter mitochondria, the S727 mutation does not affect import into the organelle and is responsible for STAT3-dependent mitochondrial transcription. Surprisingly, STAT3-dependent increase of mitochondrial transcription appears to be independent from STAT3 binding to STAT3-responsive elements. Finally, loss-of-function experiments, with chemical inhibition of the JAK/STAT3 pathway or genetic ablation of stat3 gene, demonstrated that STAT3 is also required for cell proliferation in the intestine of zebrafish.


Asunto(s)
Proliferación Celular , Células Madre Embrionarias/citología , Mitocondrias/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Sistema Nervioso Central/embriología , ADN Mitocondrial/metabolismo , Embrión no Mamífero , Células Madre Embrionarias/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Intestinos/embriología , Quinasas Janus/metabolismo , Mutación , Fosforilación , Factor de Transcripción STAT3/genética , Transducción de Señal , Transcripción Genética , Activación Transcripcional , Pez Cebra , Proteínas de Pez Cebra/genética
5.
Cell ; 136(1): 123-35, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19135894

RESUMEN

The assembly of the Smad complex is critical for TGFbeta signaling, yet the mechanisms that inactivate or empower nuclear Smad complexes are less understood. By means of siRNA screen we identified FAM (USP9x), a deubiquitinase acting as essential and evolutionarily conserved component in TGFbeta and bone morphogenetic protein signaling. Smad4 is monoubiquitinated in lysine 519 in vivo, a modification that inhibits Smad4 by impeding association with phospho-Smad2. FAM reverts this negative modification, re-empowering Smad4 function. FAM opposes the activity of Ectodermin/Tif1gamma (Ecto), a nuclear factor for which we now clarify a prominent role as Smad4 monoubiquitin ligase. Our study points to Smad4 monoubiquitination and deubiquitination as a way for cells to set their TGFbeta responsiveness: loss of FAM disables Smad4-dependent responses in several model systems, with Ecto being epistatic to FAM. This defines a regulative ubiquitination step controlling Smads that is parallel to those impinging on R-Smad phosphorylation.


Asunto(s)
Proteína Smad4/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Línea Celular Tumoral , Embrión no Mamífero/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitinación , Xenopus
6.
EMBO J ; 38(1)2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30482756

RESUMEN

During differentiation and reprogramming, new cell identities are generated by reconfiguration of gene regulatory networks. Here, we combined automated formal reasoning with experimentation to expose the logic of network activation during induction of naïve pluripotency. We find that a Boolean network architecture defined for maintenance of naïve state embryonic stem cells (ESC) also explains transcription factor behaviour and potency during resetting from primed pluripotency. Computationally identified gene activation trajectories were experimentally substantiated at single-cell resolution by RT-qPCR Contingency of factor availability explains the counterintuitive observation that Klf2, which is dispensable for ESC maintenance, is required during resetting. We tested 124 predictions formulated by the dynamic network, finding a predictive accuracy of 77.4%. Finally, we show that this network explains and predicts experimental observations of somatic cell reprogramming. We conclude that a common deterministic program of gene regulation is sufficient to govern maintenance and induction of naïve pluripotency. The tools exemplified here could be broadly applied to delineate dynamic networks underlying cell fate transitions.


Asunto(s)
Autorrenovación de las Células/genética , Reprogramación Celular/genética , Células Madre Embrionarias/fisiología , Epigénesis Genética/fisiología , Redes Reguladoras de Genes/fisiología , Animales , Sistemas CRISPR-Cas , Diferenciación Celular/genética , Células Cultivadas , Biología Computacional , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Células Madre Embrionarias de Ratones/fisiología , Células Madre Pluripotentes/fisiología
7.
Bioinformatics ; 38(1): 164-172, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34499096

RESUMEN

MOTIVATION: Single-cell RNA sequencing (scRNA-seq) enables transcriptome-wide gene expression measurements at single-cell resolution providing a comprehensive view of the compositions and dynamics of tissue and organism development. The evolution of scRNA-seq protocols has led to a dramatic increase of cells throughput, exacerbating many of the computational and statistical issues that previously arose for bulk sequencing. In particular, with scRNA-seq data all the analyses steps, including normalization, have become computationally intensive, both in terms of memory usage and computational time. In this perspective, new accurate methods able to scale efficiently are desirable. RESULTS: Here, we propose PsiNorm, a between-sample normalization method based on the power-law Pareto distribution parameter estimate. Here, we show that the Pareto distribution well resembles scRNA-seq data, especially those coming from platforms that use unique molecular identifiers. Motivated by this result, we implement PsiNorm, a simple and highly scalable normalization method. We benchmark PsiNorm against seven other methods in terms of cluster identification, concordance and computational resources required. We demonstrate that PsiNorm is among the top performing methods showing a good trade-off between accuracy and scalability. Moreover, PsiNorm does not need a reference, a characteristic that makes it useful in supervised classification settings, in which new out-of-sample data need to be normalized. AVAILABILITY AND IMPLEMENTATION: PsiNorm is implemented in the scone Bioconductor package and available at https://bioconductor.org/packages/scone/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Perfilación de la Expresión Génica , Programas Informáticos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Análisis de Expresión Génica de una Sola Célula , Análisis de la Célula Individual/métodos
8.
Nat Rev Mol Cell Biol ; 11(4): 252-63, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20216554

RESUMEN

MicroRNAs (miRNAs) are integral elements in the post-transcriptional control of gene expression. After the identification of hundreds of miRNAs, the challenge is now to understand their specific biological function. Signalling pathways are ideal candidates for miRNA-mediated regulation owing to the sharp dose-sensitive nature of their effects. Indeed, emerging evidence suggests that miRNAs affect the responsiveness of cells to signalling molecules such as transforming growth factor-beta, WNT, Notch and epidermal growth factor. As such, miRNAs serve as nodes of signalling networks that ensure homeostasis and regulate cancer, metastasis, fibrosis and stem cell biology.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/fisiología , Transducción de Señal , Animales , Humanos
9.
EMBO J ; 35(6): 618-34, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26903601

RESUMEN

Transcription factor Stat3 directs self-renewal of pluripotent mouse embryonic stem (ES) cells downstream of the cytokine leukemia inhibitory factor (LIF). Stat3 upregulates pivotal transcription factors in the ES cell gene regulatory network to sustain naïve identity. Stat3 also contributes to the rapid proliferation of ES cells. Here, we show that Stat3 increases the expression of mitochondrial-encoded transcripts and enhances oxidative metabolism. Chromatin immunoprecipitation reveals that Stat3 binds to the mitochondrial genome, consistent with direct transcriptional regulation. An engineered form of Stat3 that localizes predominantly to mitochondria is sufficient to support enhanced proliferation of ES cells, but not to maintain their undifferentiated phenotype. Furthermore, during reprogramming from primed to naïve states of pluripotency, Stat3 similarly upregulates mitochondrial transcripts and facilitates metabolic resetting. These findings suggest that the potent stimulation of naïve pluripotency by LIF/Stat3 is attributable to parallel and synergistic induction of both mitochondrial respiration and nuclear transcription factors.


Asunto(s)
Respiración de la Célula , Células Madre Embrionarias/fisiología , Regulación de la Expresión Génica , Mitocondrias/metabolismo , Células Madre Pluripotentes/fisiología , Factor de Transcripción STAT3/metabolismo , Transcripción Genética , Animales , Diferenciación Celular , Proliferación Celular , Inmunoprecipitación de Cromatina , Factor Inhibidor de Leucemia/metabolismo , Ratones , Mitocondrias/genética
10.
EMBO J ; 32(19): 2561-74, 2013 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-23942233

RESUMEN

Self-renewal of pluripotent mouse embryonic stem (ES) cells is sustained by the cytokine leukaemia inhibitory factor (LIF) acting through the transcription factor Stat3. Several targets of Stat3 have previously been identified, most notably the reprogramming factor Klf4. However, such factors are neither required nor sufficient for the potent effect of LIF. We took advantage of Stat3 null ES cells to confirm that Stat3 mediates the self-renewal response to LIF. Through comparative transcriptome analysis intersected with genome location data, we arrived at a set of candidate transcription factor effectors. Among these, Tfcp2l1 (also known as Crtr-1) was most abundant. Constitutive expression of Tfcp2l1 at levels similar to those induced by LIF effectively substituted for LIF or Stat3 in sustaining clonal self-renewal and pluripotency. Conversely, knockdown of Tfcp2l1 profoundly compromised responsiveness to LIF. We further found that Tfcp2l1 is both necessary and sufficient to direct molecular reprogramming of post-implantation epiblast stem cells to naïve pluripotency. These results establish Tfcp2l1 as the principal bridge between LIF/Stat3 input and the transcription factor core of naïve pluripotency.


Asunto(s)
Células Madre Embrionarias/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Células Madre Pluripotentes/metabolismo , Proteínas Represoras/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Células Cultivadas , Células Madre Embrionarias/citología , Factor 4 Similar a Kruppel , Ratones , Células Madre Pluripotentes/citología , Factor de Transcripción STAT3/genética
11.
Proc Natl Acad Sci U S A ; 109(38): 15354-9, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22949641

RESUMEN

The Spemann organizer stands out from other signaling centers of the embryo because of its broad patterning effects. It defines development along the anteroposterior and dorsoventral axes of the vertebrate body, mainly by secreting antagonists of growth factors. Qualitative models proposed more than a decade ago explain the organizer's region-specific inductions (i.e., head and trunk) as the result of different combinations of antagonists. For example, head induction is mediated by extracellular inhibition of Wnt, BMP, and Nodal ligands. However, little is known about how the levels of these antagonists become harmonized with those of their targets and with the factors initially responsible for germ layers and organizer formation, including Nodal itself. Here we show that key ingredients of the head-organizer development, namely Nodal ligands, Nodal antagonists, and ADMP ligands reciprocally adjust each other's strength and range of activity by a self-regulating network of interlocked feedback and feedforward loops. A key element in this cross-talk is the limited availability of ACVR2a, for which Nodal and ADMP must compete. By trapping Nodal extracellularly, the Nodal antagonists Cerberus and Lefty are permissive for ADMP activity. The system self-regulates because ADMP/ACVR2a/Smad1 signaling in turn represses the expression of the Nodal antagonists, reestablishing the equilibrium. In sum, this work reveals an unprecedented set of interactions operating within the organizer that is critical for embryonic patterning.


Asunto(s)
Organizadores Embrionarios/metabolismo , Receptores de Activinas Tipo I/metabolismo , Receptores de Activinas Tipo II/metabolismo , Animales , Tipificación del Cuerpo , Proteínas Morfogenéticas Óseas/metabolismo , Línea Celular , Pollos , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Ligandos , Modelos Biológicos , Transducción de Señal , Factores de Tiempo , Transfección , Xenopus laevis/metabolismo
12.
J Mol Cell Biol ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38305139

RESUMEN

The high mutation rate of SARS-CoV-2 leads to the emergence of multiple variants, some of which are resistant to vaccines and drugs targeting viral elements. Targeting host dependency factors, e.g. cellular proteins required for viral replication, would help prevent resistance. However, it remains unclear whether different SARS-CoV-2 variants induce conserved cellular responses and exploit the same core host factors. To this end, we compared three variants of concern and found that the host transcriptional response was conserved, differing only in kinetics and magnitude. Through CRISPR screening, we identified host genes required for infection by each variant. Most of the genes were shared by multiple variants. We validated our hits with small molecules and repurposed Food and Drug Administration-approved drugs. All the drugs were highly active against all the variants tested, including new variants that emerged during the study (Delta and Omicron). Mechanistically, we identified reactive oxygen species production as a key step in early virus replication. Antioxidants such as N-acetyl cysteine (NAC) were effective against all the variants in both human lung cells and a humanised mouse model. Our study supports the use of available antioxidant drugs, such as NAC, as a general and effective anti-COVID-19 approach.

13.
Stem Cell Reports ; 19(5): 729-743, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38701777

RESUMEN

Embryonic stem cells (ESCs) are defined as stem cells with self-renewing and differentiation capabilities. These unique properties are tightly regulated and controlled by complex genetic and molecular mechanisms, whose understanding is essential for both basic and translational research. A large number of studies have mostly focused on understanding the molecular mechanisms governing pluripotency and differentiation of ESCs, while the regulation of proliferation has received comparably less attention. Here, we investigate the role of ZZZ3 (zinc finger ZZ-type containing 3) in human ESCs homeostasis. We found that knockdown of ZZZ3 negatively impacts ribosome biogenesis, translation, and mTOR signaling, leading to a significant reduction in cell proliferation. This process occurs without affecting pluripotency, suggesting that ZZZ3-depleted ESCs enter a "dormant-like" state and that proliferation and pluripotency can be uncoupled also in human ESCs.


Asunto(s)
Proliferación Celular , Homeostasis , Células Madre Embrionarias Humanas , Ribosomas , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Ribosomas/metabolismo , Diferenciación Celular/genética , Biosíntesis de Proteínas
14.
Cell Death Differ ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965447

RESUMEN

TFEB, a bHLH-leucine zipper transcription factor belonging to the MiT/TFE family, globally modulates cell metabolism by regulating autophagy and lysosomal functions. Remarkably, loss of TFEB in mice causes embryonic lethality due to severe defects in placentation associated with aberrant vascularization and resulting hypoxia. However, the molecular mechanism underlying this phenotype has remained elusive. By integrating in vivo analyses with multi-omics approaches and functional assays, we have uncovered an unprecedented function for TFEB in promoting the formation of a functional syncytiotrophoblast in the placenta. Our findings demonstrate that constitutive loss of TFEB in knock-out mice is associated with defective formation of the syncytiotrophoblast layer. Indeed, using in vitro models of syncytialization, we demonstrated that TFEB translocates into the nucleus during syncytiotrophoblast formation and binds to the promoters of crucial placental genes, including genes encoding fusogenic proteins (Syncytin-1 and Syncytin-2) and enzymes involved in steroidogenic pathways, such as CYP19A1, the rate-limiting enzyme for the synthesis of 17ß-Estradiol (E2). Conversely, TFEB depletion impairs both syncytial fusion and endocrine properties of syncytiotrophoblast, as demonstrated by a significant decrease in the secretion of placental hormones and E2 production. Notably, restoration of TFEB expression resets syncytiotrophoblast identity. Our findings identify that TFEB controls placental development and function by orchestrating both the transcriptional program underlying trophoblast fusion and the acquisition of endocrine function, which are crucial for the bioenergetic requirements of embryonic development.

15.
Nature ; 449(7159): 183-8, 2007 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-17728715

RESUMEN

MicroRNAs are crucial modulators of gene expression, yet their involvement as effectors of growth factor signalling is largely unknown. Ligands of the transforming growth factor-beta superfamily are essential for development and adult tissue homeostasis. In early Xenopus embryos, signalling by the transforming growth factor-beta ligand Nodal is crucial for the dorsal induction of the Spemann's organizer. Here we report that Xenopus laevis microRNAs miR-15 and miR-16 restrict the size of the organizer by targeting the Nodal type II receptor Acvr2a. Endogenous miR-15 and miR-16 are ventrally enriched as they are negatively regulated by the dorsal Wnt/beta-catenin pathway. These findings exemplify the relevance of microRNAs as regulators of early embryonic patterning acting at the crossroads of fundamental signalling cascades.


Asunto(s)
Receptores de Activinas Tipo II/metabolismo , Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Xenopus laevis/embriología , Xenopus laevis/genética , Receptores de Activinas Tipo II/biosíntesis , Receptores de Activinas Tipo II/genética , Activinas/metabolismo , Animales , Tipificación del Cuerpo , MicroARNs/genética , Proteína Nodal , Organizadores Embrionarios/embriología , Organizadores Embrionarios/metabolismo , Proteínas Wnt/metabolismo , Xenopus laevis/metabolismo , beta Catenina/metabolismo
16.
Biol Open ; 12(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36504370

RESUMEN

We previously demonstrated gradual loss of epiblast during diapause in embryos lacking components of the LIF/IL6 receptor. Here, we explore the requirement for the downstream signalling transducer andactivator of transcription STAT3 and its target, TFCP2L1, in maintenance of naïve pluripotency. Unlike conventional markers, such as NANOG, which remains high in epiblast until implantation, both STAT3 and TFCP2L1 proteins decline during blastocyst expansion, but intensify in the embryonic region after induction of diapause, as observed visually and confirmed using our image-analysis pipeline, consistent with our previous transcriptional expression data. Embryos lacking STAT3 or TFCP2L1 underwent catastrophic loss of most of the inner cell mass during the first few days of diapause, indicating involvement of signals in addition to LIF/IL6 for sustaining naïve pluripotency in vivo. By blocking MEK/ERK signalling from the morula stage, we could derive embryonic stem cells with high efficiency from STAT3 null embryos, but not those lacking TFCP2L1, suggesting a hitherto unknown additional role for this essential STAT3 target in transition from embryo to embryonic stem cells in vitro. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Células Madre Pluripotentes , Proteínas Represoras , Factor de Transcripción STAT3 , Ratones , Blastocisto/metabolismo , Células Madre Embrionarias/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Células Madre Pluripotentes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Animales
17.
Cell Death Discov ; 9(1): 226, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407568

RESUMEN

STAT3 and HIF1α are two fundamental transcription factors involved in many merging processes, like angiogenesis, metabolism, and cell differentiation. Notably, under pathological conditions, the two factors have been shown to interact genetically, but both the molecular mechanisms underlying such interactions and their relevance under physiological conditions remain unclear. In mouse embryonic stem cells (ESCs) we manage to determine the specific subset of hypoxia-induced genes that need STAT3 to be properly transcribed and, among them, fundamental genes like Vegfa, Hk1, Hk2, Pfkp and Hilpda are worth mentioning. Unexpectedly, we also demonstrated that the absence of STAT3 does not affect the expression of Hif1α mRNA nor the stabilization of HIF1α protein, but the STAT3-driven regulation of the hypoxia-dependent subset of gene could rely on the physical interaction between STAT3 and HIF1α. To further elucidate the physiological roles of this STAT3 non-canonical nuclear activity, we used a CRISPR/Cas9 zebrafish stat3 knock-out line. Notably, hypoxia-related fluorescence of the hypoxia zebrafish reporter line (HRE:mCherry) cannot be induced when Stat3 is not active and, while Stat3 Y705 phosphorylation seems to have a pivotal role in this process, S727 does not affect the Stat3-dependent hypoxia response. Hypoxia is fundamental for vascularization, angiogenesis and immune cells mobilization; all processes that, surprisingly, cannot be induced by low oxygen levels when Stat3 is genetically ablated. All in all, here we report the specific STAT3/HIF1α-dependent subset of genes in vitro and, for the first time with an in vivo model, we determined some of the physiological roles of STAT3-hypoxia crosstalk.

18.
Nat Cell Biol ; 25(5): 643-657, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37106060

RESUMEN

During embryonic development, naive pluripotent epiblast cells transit to a formative state. The formative epiblast cells form a polarized epithelium, exhibit distinct transcriptional and epigenetic profiles and acquire competence to differentiate into all somatic and germline lineages. However, we have limited understanding of how the transition to a formative state is molecularly controlled. Here we used murine embryonic stem cell models to show that ESRRB is both required and sufficient to activate formative genes. Genetic inactivation of Esrrb leads to illegitimate expression of mesendoderm and extra-embryonic markers, impaired formative expression and failure to self-organize in 3D. Functionally, this results in impaired ability to generate formative stem cells and primordial germ cells in the absence of Esrrb. Computational modelling and genomic analyses revealed that ESRRB occupies key formative genes in naive cells and throughout the formative state. In so doing, ESRRB kickstarts the formative transition, leading to timely and unbiased capacity for multi-lineage differentiation.


Asunto(s)
Células Madre Embrionarias , Células Madre Pluripotentes , Ratones , Animales , Diferenciación Celular/genética , Células Madre Pluripotentes/metabolismo , Estratos Germinativos/metabolismo , Células Germinativas/metabolismo , Receptores de Estrógenos/metabolismo
19.
Brief Funct Genomics ; 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37801430

RESUMEN

Embryonic stem cells (ESCs) preserve the unique ability to differentiate into any somatic cell lineage while maintaining their self-renewal potential, relying on a complex interplay of extracellular signals regulating the expression/activity of pluripotency transcription factors and their targets. Leukemia inhibitory factor (LIF)-activated STAT3 drives ESCs' stemness by a number of mechanisms, including the transcriptional induction of pluripotency factors such as Klf4 and the maintenance of a stem-like epigenetic landscape. However, it is unknown if STAT3 directly controls stem-cell specific non-coding RNAs, crucial to balance pluripotency and differentiation. Applying a bioinformatic pipeline, here we identify Lncenc1 in mouse ESCs as an STAT3-dependent long non-coding RNA that supports pluripotency. Lncenc1 acts in the cytoplasm as a positive feedback regulator of the LIF-STAT3 axis by competing for the binding of microRNA-128 to the 3'UTR of the Klf4 core pluripotency factor mRNA, enhancing its expression. Our results unveil a novel non-coding RNA-based mechanism for LIF-STAT3-mediated pluripotency.

20.
Nat Commun ; 14(1): 3962, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407555

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by CAG-repeat expansions in the huntingtin (HTT) gene. The resulting mutant HTT (mHTT) protein induces toxicity and cell death via multiple mechanisms and no effective therapy is available. Here, we employ a genome-wide screening in pluripotent mouse embryonic stem cells (ESCs) to identify suppressors of mHTT toxicity. Among the identified suppressors, linked to HD-associated processes, we focus on Metal response element binding transcription factor 1 (Mtf1). Forced expression of Mtf1 counteracts cell death and oxidative stress caused by mHTT in mouse ESCs and in human neuronal precursor cells. In zebrafish, Mtf1 reduces malformations and apoptosis induced by mHTT. In R6/2 mice, Mtf1 ablates motor defects and reduces mHTT aggregates and oxidative stress. Our screening strategy enables a quick in vitro identification of promising suppressor genes and their validation in vivo, and it can be applied to other monogenic diseases.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Ratones , Animales , Humanos , Modelos Animales de Enfermedad , Pez Cebra/genética , Pez Cebra/metabolismo , Enfermedad de Huntington/metabolismo , Neuronas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA