Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 204(8): 2098-2109, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32179638

RESUMEN

Myelodysplastic syndromes (MDS) are a heterogeneous group of hematopoietic stem cell diseases characterized by dysplasia of one or more hematologic lineages and a high risk of developing into acute myeloid leukemia. MDS patients have recurrent bacterial infections and abnormal expression of CD56 by monocytes. We investigated MDS patients' bone marrow CD56+/CD56- monocytes and their in vitro-derived dendritic cell populations in comparison with cells obtained from disease-free subjects. We found that monocytes from MDS patients, irrespective of CD56 expression, have reduced phagocytosis activity and low expression of genes involved in triggering immune responses, regulation of immune and inflammatory response signaling pathways, and in the response to LPS. Dendritic cells derived in vitro from MDS monocytes failed to develop dendritic projections and had reduced expression of HLA-DR and CD86, suggesting that Ag processing and T cell activation capabilities are impaired. In conclusion, we identified, in both CD56+ and CD56- monocytes from MDS patients, several abnormalities that may be related to the increased susceptibility to infections observed in these patients.


Asunto(s)
Infecciones Bacterianas/inmunología , Médula Ósea/inmunología , Médula Ósea/patología , Células Dendríticas/patología , Monocitos/patología , Síndromes Mielodisplásicos/inmunología , Síndromes Mielodisplásicos/patología , Infecciones Bacterianas/patología , Antígeno CD56/genética , Antígeno CD56/inmunología , Células Dendríticas/inmunología , Humanos , Monocitos/inmunología
2.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32023985

RESUMEN

Magnetic hyperthermia (MHT) has been shown as a promising alternative therapy for glioblastoma (GBM) treatment. This study consists of three parts: The first part evaluates the heating potential of aminosilane-coated superparamagnetic iron oxide nanoparticles (SPIONa). The second and third parts comprise the evaluation of MHT multiple applications in GBM model, either in vitro or in vivo. The obtained heating curves of SPIONa (100 nm, +20 mV) and their specific absorption rates (SAR) stablished the best therapeutic conditions for frequencies (309 kHz and 557 kHz) and magnetic field (300 Gauss), which were stablished based on three in vitro MHT application in C6 GBM cell line. The bioluminescence (BLI) signal decayed in all applications and parameters tested and 309 kHz with 300 Gauss have shown to provide the best therapeutic effect. These parameters were also established for three MHT applications in vivo, in which the decay of BLI signal correlates with reduced tumor and also with decreased tumor glucose uptake assessed by positron emission tomography (PET) images. The behavior assessment showed a slight improvement after each MHT therapy, but after three applications the motor function displayed a relevant and progressive improvement until the latest evaluation. Thus, MHT multiple applications allowed an almost total regression of the GBM tumor in vivo. However, futher evaluations after the therapy acute phase are necessary to follow the evolution or tumor total regression. BLI, positron emission tomography (PET), and spontaneous locomotion evaluation techniques were effective in longitudinally monitoring the therapeutic effects of the MHT technique.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Hipertermia Inducida/métodos , Nanopartículas de Magnetita/administración & dosificación , Silanos/química , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Glioblastoma/diagnóstico por imagen , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapéutico , Masculino , Ratones , Tamaño de la Partícula , Tomografía de Emisión de Positrones , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Transfusion ; 56(8): 2030-6, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27232272

RESUMEN

BACKGROUND: Analysis of umbilical cord blood (UCB) transplants shows a correlation between engraftment and total number of infused cells. Thus, it is worth evaluating what maternal and neonatal characteristics and collection techniques may affect the quality of UCB units. STUDY DESIGN AND METHODS: A cross-sectional study was performed with 7897 donors sequentially selected in three health care institutions in Brazil from October 2004 to March 2012, in which both quantitative and qualitative approaches were applied. All donors were considered suitable for cord blood collection. RESULTS: The maternal and neonatal characteristics and techniques of collection that influenced the total number of nucleated cells (TNCs; p < 0.001) were type of delivery, newborn weight and sex, and institution of UCB collection. The TNC count was associated with gestational age (p = 0.008), type of delivery (p < 0.001), newborn sex (p < 0.001), newborn weight (p < 0.001), and UCB collection technique (p = 0.003). Center B presented the largest number of nucleated cells in its results (p < 0.001), followed by Center A (p = 0.001). Other characteristics, such as maternal age, were analyzed but were not relevant for the nucleated cell number. CONCLUSION: This study provides elements for a model that allows an efficient selection of UCB donors, prioritizing candidates who have a better chance to lead to an optimized use of cord blood cells units.


Asunto(s)
Recolección de Muestras de Sangre/métodos , Sangre Fetal/citología , Sangre Fetal/fisiología , Adulto , Almacenamiento de Sangre/métodos , Conservación de la Sangre/métodos , Estudios Transversales , Femenino , Edad Gestacional , Humanos , Recién Nacido , Masculino , Embarazo
5.
Front Cell Dev Biol ; 10: 858996, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35445029

RESUMEN

Mesenchymal stem cells (MSCs) are multipotent cells found in various tissues and are easily cultivated. For use in clinical protocols, MSCs must be expanded to obtain an adequate number of cells, but a senescence state may be instituted after some passages, reducing their replicative potential. In this study, we report a case where MSC derived from an elderly donor acquired a senescence state after three passages. The bone marrow was aspirated from a female patient submitted to a cell therapy for the incontinency urinary protocol; MSCs were cultivated with DMEM low glucose, supplemented with 10% autologous serum (AS) plus 1% L-glutamine and 1% antibiotic/antimycotic. Senescence analysis was performed by ß-galactosidase staining after 24 and 48 h. Controls were established using BM-MSC from healthy donors and used for senescence and gene expression assays. Gene expression was performed using RT-PCR for pluripotency genes, such as SOX2, POU5F1, NANOG, and KLF4. MSC telomere length was measured by the Southern blotting technique, and MSCs were also analyzed for their capacity to differentiate into adipocytes, chondrocytes, and osteocytes. The patient's MSC expansion using AS displayed an early senescence state. In order to understand the role of AS in senescence, MSCs were then submitted to two different culture conditions: 1) with AS or 2) with FBS supplementation. Senescence state was assessed after 24 h, and no statistical differences were observed between the two conditions. However, patients' cells cultured with AS displayed a higher number of senescence cells than FBS medium after 48 h (p = 0.0018). Gene expression was performed in both conditions; increased expression of KLF4 was observed in the patient's cells in comparison to healthy controls (p = 0.0016); reduced gene expression was observed for NANOG (p = 0.0016) and SOX2 (p = 0.0014) genes. Telomere length of the patient's cells was shorter than that of a healthy donor and that of a patient of similar age. Osteocyte differentiation seemed to be more diffuse than that of the healthy donor and that of the patient of similar age. MSCs could enter a senescence state during expansion in early passages and can impact MSC quality for clinical applications, reducing their efficacy when administered.

6.
Vaccines (Basel) ; 8(3)2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854391

RESUMEN

Coronavirus disease 2019 (COVID-19) is the biggest health challenge of the 21st century, affecting millions of people globally. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has ignited an unprecedented effort from the scientific community in the development of new vaccines on different platforms due to the absence of a broad and effective treatment for COVID-19 or prevention strategy for SARS-CoV-2 dissemination. Based on 50 current studies selected from the main clinical trial databases, this systematic review summarizes the global race for vaccine development against COVID-19. For each study, the main intervention characteristics, the design used, and the local or global center partnerships created are highlighted. Most vaccine developments have taken place in Asia, using a viral vector method. Two purified inactivated SARS-CoV-2 vaccine candidates, an mRNA-based vaccine mRNA1273, and the chimpanzee adenoviral vaccine ChAdOx1 are currently in phase III clinical trials in the respective countries Brazil, the United Arab Emirates, the USA, and the United Kingdom. These vaccines are being developed based on a quickly formed network of collaboration.

7.
Stem Cell Res Ther ; 9(1): 310, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30413179

RESUMEN

BACKGROUND: Previous studies have demonstrated remarkable tropism of mesenchymal stem cells (MSCs) toward malignant gliomas, making these cells a potential vehicle for delivery of therapeutic agents to disseminated glioblastoma (GBM) cells. However, the potential contribution of MSCs to tumor progression is a matter of concern. It has been suggested that CD133+ GBM stem cells secrete a variety of chemokines, including monocytes chemoattractant protein-1 (MCP-1/CCL2) and stromal cell-derived factor-1(SDF-1/CXCL12), which could act in this tropism. However, the role in the modulation of this tropism of the subpopulation of CD133+ cells, which initiate GBM and the mechanisms underlying the tropism of MSCs to CD133+ GBM cells and their effects on tumor development, remains poorly defined. METHODS/RESULTS: We found that isolated and cultured MSCs (human umbilical cord blood MSCs) express CCR2 and CXCR4, the respective receptors for MCP-1/CCL2 and SDF-1/CXCL12, and demonstrated, in vitro, that MCP-1/CCL2 and SDF-1/CXC12, secreted by CD133+ GBM cells from primary cell cultures, induce the migration of MSCs. In addition, we confirmed that after in vivo GBM tumor establishment, by stereotaxic implantation of the CD133+ GBM cells labeled with Qdots (705 nm), MSCs labeled with multimodal iron oxide nanoparticles (MION) conjugated to rhodamine-B (Rh-B) (MION-Rh), infused by caudal vein, were able to cross the blood-brain barrier of the animal and migrate to the tumor region. Evaluation GBM tumors histology showed that groups that received MSC demonstrated tumor development, glial invasiveness, and detection of a high number of cycling cells. CONCLUSIONS: Therefore, in this study, we validated the chemotactic effect of MCP-1/CCL2 and SDF-1/CXCL12 in mediating the migration of MSCs toward CD133+ GBM cells. However, we observed that, after infiltrating the tumor, MSCs promote tumor growth in vivo probably by release of exosomes. Thus, the use of these cells as a therapeutic carrier strategy to target GBM cells must be approached with caution.


Asunto(s)
Antígeno AC133/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/patología , Células Madre Mesenquimatosas/metabolismo , Células Madre Neoplásicas/patología , Tropismo , Animales , Neoplasias Encefálicas/ultraestructura , Carcinogénesis/metabolismo , Carcinogénesis/patología , Ensayos de Migración Celular , Proliferación Celular , Separación Celular , Quimiocinas/metabolismo , Glioblastoma/ultraestructura , Humanos , Inmunofenotipificación , Masculino , Células Madre Mesenquimatosas/ultraestructura , Modelos Biológicos , Células Madre Neoplásicas/ultraestructura , Puntos Cuánticos/metabolismo , Ratas Wistar , Receptores de Quimiocina/metabolismo , Esferoides Celulares/patología , Células Tumorales Cultivadas
8.
Oncotarget ; 9(31): 21731-21743, 2018 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-29774098

RESUMEN

BACKGROUND: Ependymoma (EPN), the third most common pediatric brain tumor, is a central nervous system (CNS) malignancy originating from the walls of the ventricular system. Surgical resection followed by radiation therapy has been the primary treatment for most pediatric intracranial EPNs. Despite numerous studies into the prognostic value of histological classification, the extent of surgical resection and adjuvant radiotherapy, there have been relatively few studies into the molecular and cellular biology of EPNs. RESULTS: We elucidated the ultrastructure of the cultured EPN cells and characterized their profile of immunophenotypic pluripotency markers (CD133, CD90, SSEA-3, CXCR4). We established an experimental EPN model by the intracerebroventricular infusion of EPN cells labeled with multimodal iron oxide nanoparticles (MION), thereby generating a tumor and providing a clinically relevant animal model. MRI analysis was shown to be a valuable tool when combined with effective MION labeling techniques to accompany EPN growth. CONCLUSIONS: We demonstrated that GFAP/CD133+CD90+/CD44+ EPN cells maintained key histopathological and growth characteristics of the original patient tumor. The characterization of EPN cells and the experimental model could facilitate biological studies and preclinical drug screening for pediatric EPNs. METHODS: In this work, we established notoriously challenging primary cell culture of anaplastic EPNs (WHO grade III) localized in the posterior fossa (PF), using EPNs obtained from 1 to 10-year-old patients (n = 07), and then characterized their immunophenotype and ultrastructure to finally develop a xenograft model.

9.
Cancer Cell Int ; 7: 11, 2007 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-17559657

RESUMEN

BACKGROUND: Uncovering the molecular mechanism underlying expansion of hematopoietic stem and progenitor cells is critical to extend current therapeutic applications and to understand how its deregulation relates to leukemia. The characterization of genes commonly relevant to stem/progenitor cell expansion and tumor development should facilitate the identification of novel therapeutic targets in cancer. METHODS: CD34+/CD133+ progenitor cells were purified from human umbilical cord blood and expanded in vitro. Correlated molecular changes were analyzed by gene expression profiling using microarrays covering up to 55,000 transcripts. Genes regulated during progenitor cell expansion were identified and functionally classified. Aberrant expression of such genes in cancer was indicated by in silico SAGE. Differential expression of selected genes was assessed by real-time PCR in hematopoietic cells from chronic myeloid leukemia patients and healthy individuals. RESULTS: Several genes and signaling pathways not previously associated with ex vivo expansion of CD133+/CD34+ cells were identified, most of which associated with cancer. Regulation of MEK/ERK and Hedgehog signaling genes in addition to numerous proto-oncogenes was detected during conditions of enhanced progenitor cell expansion. Quantitative real-time PCR analysis confirmed down-regulation of several newly described cancer-associated genes in CD133+/CD34+ cells, including DOCK4 and SPARCL1 tumor suppressors, and parallel results were verified when comparing their expression in cells from chronic myeloid leukemia patients CONCLUSION: Our findings reveal potential molecular targets for oncogenic transformation in CD133+/CD34+ cells and strengthen the link between deregulation of stem/progenitor cell expansion and the malignant process.

10.
Front Immunol ; 8: 141, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28261205

RESUMEN

Lymph node (LN) is a secondary lymphoid organ with highly organized and compartmentalized structure. LNs harbor B, T, and other cells among fibroblastic reticular cells (FRCs). FRCs are characterized by both podoplanin (PDPN/gp38) expression and by the lack of CD31 expression. FRCs are involved in several immune response processes but mechanisms underlying their function are still under investigation. Double-negative cells (DNCs), another cell population within LNs, are even less understood. They do not express PDPN or CD31, their localization within the LN is unknown, and their phenotype and function remain to be elucidated. This study evaluates the gene expression and cytokines and chemokines profile of human LN-derived FRCs and DNCs during homeostasis and following inflammatory stimuli. Cytokines and chemokines secreted by human FRCs and DNCs partially diverged from those identified in murine models that used similar stimulation. Cytokine and chemokine secretion and their receptors expression levels differed between stimulated DNCs and FRCs, with FRCs expressing a broader range of chemokines. Additionally, dendritic cells demonstrated increased migration toward FRCs, possibly due to chemokine-induced chemotaxis since migration was significantly decreased upon neutralization of secreted CCL2 and CCL20. Our study contributes to the understanding of the biology and functions of FRCs and DNCs and, accordingly, of the mechanisms involving them in immune cells activation and migration.

11.
Stem Cell Res Ther ; 7(1): 97, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27465541

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs) are multipotent progenitor cells used in several cell therapies. MSCs are characterized by the expression of CD73, CD90, and CD105 cell markers, and the absence of CD34, CD45, CD11a, CD19, and HLA-DR cell markers. CD90 is a glycoprotein present in the MSC membranes and also in adult cells and cancer stem cells. The role of CD90 in MSCs remains unknown. Here, we sought to analyse the role that CD90 plays in the characteristic properties of in vitro expanded human MSCs. METHODS: We investigated the function of CD90 with regard to morphology, proliferation rate, suppression of T-cell proliferation, and osteogenic/adipogenic differentiation of MSCs by reducing the expression of this marker using CD90-target small hairpin RNA lentiviral vectors. RESULTS: The present study shows that a reduction in CD90 expression enhances the osteogenic and adipogenic differentiation of MSCs in vitro and, unexpectedly, causes a decrease in CD44 and CD166 expression. CONCLUSION: Our study suggests that CD90 controls the differentiation of MSCs by acting as an obstacle in the pathway of differentiation commitment. This may be overcome in the presence of the correct differentiation stimuli, supporting the idea that CD90 level manipulation may lead to more efficient differentiation rates in vitro.


Asunto(s)
Adipocitos/metabolismo , Silenciador del Gen , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Antígenos Thy-1/genética , Adipocitos/citología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Líquido Amniótico/citología , Líquido Amniótico/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Diferenciación Celular , Proliferación Celular , Pulpa Dental/citología , Pulpa Dental/metabolismo , Proteínas Fetales/genética , Proteínas Fetales/metabolismo , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Inmunofenotipificación , Lentivirus/genética , Lentivirus/metabolismo , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Linfocitos T/citología , Linfocitos T/metabolismo , Antígenos Thy-1/metabolismo
12.
Oncotarget ; 7(26): 40546-40557, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27244897

RESUMEN

Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patient's tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types.


Asunto(s)
Antígeno AC133/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Células Madre Neoplásicas/citología , Adipocitos/citología , Animales , Biomarcadores de Tumor/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Sangre Fetal/citología , Humanos , Inmunofenotipificación , Masculino , Células Madre Mesenquimatosas/citología , Microesferas , Ratas , Ratas Wistar
13.
Front Neurol ; 4: 214, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24432012

RESUMEN

Glioblastomas are the most lethal primary brain tumor that frequently relapse or progress as focal masses after radiation, suggesting that a fraction of tumor cells are responsible for the tumor regrowth. The identification of a brain tumor cell subpopulation with potent tumorigenic activity supports the cancer stem cell hypothesis in solid tumors. The goal of this study is to determine a methodology for the establishment of primary human glioblastoma cell lines. Our aim is achieved by taking the following approaches: (i) the establishment of primary glioblastoma cell culture; (ii) isolation of neurospheres derived from glioblastoma primary cultures; (iii) selection of CD133 cells from neurospheres, (iv) formation of subspheres in the CD133-positive population, (v) study of the expression level of GFAP, CD133, Nestin, Nanog, CD34, Sox2, CD44, and CD90 markers on tumor subspheres. Hence, we described a successful method for isolation of CD133-positive cell population and establishment of glioblastoma neurospheres from this primary culture, which are more robust than the ones derived straight from the tumor. Pointed out that the neurospheres derived from glioblastoma primary culture showed 29% more cells expressing CD133 then the ones straight tumor-derived, denoting a higher concentration of CD133-positive cells in the neurospheres derived from glioblastoma primary culture. These CD133-positive fractions were able to further generate subspheres. The subspheres derived from glioblastoma primary culture presented a well-defined morphology while the ones derived from the fresh tumor were sparce and less robust. And the negative fraction of CD133 cells was unable to generate subspheres. The tumor subspheres expressed GFAP, CD133, Nestin, Nanog, CD44, and CD90. Also, the present study describes an optimization of neurospheres/subspheres isolation from glioblastoma primary culture by selection of CD133-positive adherent stem cell.

14.
Int J Nanomedicine ; 9: 337-50, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24531365

RESUMEN

Here we describe multimodal iron oxide nanoparticles conjugated to Rhodamine-B (MION-Rh), their stability in culture medium, and subsequent validation of an in vitro protocol to label mesenchymal stem cells from umbilical cord blood (UC-MSC) with MION-Rh. These cells showed robust labeling in vitro without impairment of their functional properties, the viability of which were evaluated by proliferation kinetic and ultrastructural analyzes. Thus, labeled cells were infused into striatum of adult male rats of animal model that mimic late onset of Parkinson's disease and, after 15 days, it was observed that cells migrated along the medial forebrain bundle to the substantia nigra as hypointense spots in T2 magnetic resonance imaging. These data were supported by short-term magnetic resonance imaging. Studies were performed in vivo, which showed that about 5 × 10(5) cells could be efficiently detected in the short term following infusion. Our results indicate that these labeled cells can be efficiently tracked in a neurodegenerative disease model.


Asunto(s)
Rastreo Celular/métodos , Sangre Fetal/citología , Nanopartículas de Magnetita , Células Madre Mesenquimatosas/citología , Animales , Diferenciación Celular , Movimiento Celular , Trasplante de Células Madre de Sangre del Cordón Umbilical , Femenino , Colorantes Fluorescentes , Humanos , Imagen por Resonancia Magnética , Nanopartículas de Magnetita/química , Masculino , Trasplante de Células Madre Mesenquimatosas , Nanomedicina , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/terapia , Embarazo , Ratas , Ratas Wistar , Rodaminas , Sustancia Negra/citología
15.
Int J Nanomedicine ; 9: 3749-70, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25143726

RESUMEN

The increase in clinical trials assessing the efficacy of cell therapy for structural and functional regeneration of the nervous system in diseases related to the aging brain is well known. However, the results are inconclusive as to the best cell type to be used or the best methodology for the homing of these stem cells. This systematic review analyzed published data on SPION (superparamagnetic iron oxide nanoparticle)-labeled stem cells as a therapy for brain diseases, such as ischemic stroke, Parkinson's disease, amyotrophic lateral sclerosis, and dementia. This review highlights the therapeutic role of stem cells in reversing the aging process and the pathophysiology of brain aging, as well as emphasizing nanotechnology as an important tool to monitor stem cell migration in affected regions of the brain.


Asunto(s)
Encefalopatías/terapia , Encéfalo , Nanopartículas de Magnetita/uso terapéutico , Trasplante de Células Madre , Animales , Encéfalo/citología , Encéfalo/fisiología , Línea Celular , Senescencia Celular/fisiología , Humanos , Ratones , Ratas
16.
PLoS One ; 6(8): e21702, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21829599

RESUMEN

Thymic CD4+CD25+ cells play an important role in immune regulation and are continuously developed in the thymus as an independent lineage. How these cells are generated, what are their multiple pathways of suppressive activity and which are their specific markers are questions that remain unanswered. To identify molecules involved in the function and development of human CD4+CD25+ T regulatory cells we targeted thymic CD4+CD25+ cells by peptide phage display. A phage library containing random peptides was screened ex vivo for binding to human thymic CD4+CD25+ T cells. After four rounds of selection on CD4+CD25+ enriched populations of thymocytes, we sequenced several phage displayed peptides and selected one with identity to the Vitamin D Receptor (VDR). We confirmed the binding of the VDR phage to active Vitamin D in vitro, as well as the higher expression of VDR in CD4+CD25+ cells. We suggest that differential expression of VDR on natural Tregs may be related to the relevance of Vitamin D in function and ontogeny of these cells.


Asunto(s)
Bacteriófagos/genética , Antígenos CD4/inmunología , Subunidad alfa del Receptor de Interleucina-2/inmunología , Linfocitos T/inmunología , Timo/inmunología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Factores de Transcripción Forkhead/inmunología , Humanos , Receptores de Calcitriol/inmunología
17.
Cell Reprogram ; 12(4): 391-403, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20698778

RESUMEN

Adherent umbilical cord blood stromal cells (AUCBSCs) are multipotent cells with differentiation capacities. Therefore, these cells have been investigated for their potential in cell-based therapies. Quantum Dots (QDs) are an alternative to organic dyes and fluorescent proteins because of their long-term photostability. In this study we determined the effects of the cell passage on AUCBSCs morphology, phenotype, and differentiation potential. QDs labeled AUCBSCs in the fourth cell passage were differentiated in the three mesodermal lineages and were evaluated using cytochemical methods and transmission electron microscopy (TEM). Gene and protein expression of the AUCBSCs immunophenotypic markers were also evaluated in the labeled cells by real-time quantitative PCR and flow cytometry. In this study we were able to define the best cellular passage to work with AUCBSCs and we also demonstrated that the use of fluorescent QDs can be an efficient nano-biotechnological tool in differentiation studies because labeled cells do not have their characteristics compromised.


Asunto(s)
Adhesión Celular , Diferenciación Celular , Proliferación Celular , Sangre Fetal/citología , Nanotecnología , Células del Estroma/citología , Recuento de Células , Linaje de la Célula , Células Cultivadas , Sangre Fetal/metabolismo , Citometría de Flujo , Humanos , Inmunofenotipificación , Células del Estroma/metabolismo , Células del Estroma/ultraestructura
18.
Cancer Res ; 70(13): 5249-58, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20530666

RESUMEN

Donor leukocyte infusions (DLI) in the allogeneic hematopoietic transplant setting can provide a clinically relevant boost of immunity to reduce opportunistic infections and to increase graft-versus-leukemia activity. Despite significant advances in applicability, DLI has not been available for single-unit recipients of unrelated cord blood transplant. Ex vivo expansion of cord blood T cells can be achieved with interleukin (IL)-2 and CD3/CD28 costimulatory beads. However, significant apoptosis occurs in proliferating T cells, diminishing the yield and skewing the CD4/CD8 ratio in the T-cell population, jeopardizing the potential efficacy of DLI. In this study, we show that interleukin (IL)-7 not only reduces apoptosis of activated T lymphocytes and enhances their proliferation but also promotes functional maturation, leading to secretion of IFN-gamma and other key cytokines. Recognizing that infused T lymphocytes will need to meet microbial antigens in secondary lymphoid organs to generate effectors, we also show that expansion with IL-7 promotes the preservation of a polyclonal broad T-cell receptor repertoire and a surface phenotype that favors lymph node homing. Expanded lymphocytes lack alloreactivity against recipient and other allogeneic cells, indicating a favorable safety profile from graft-versus-host disease. Nevertheless, expanded T cells can be primed subsequently against lymphoid and myeloid leukemia cells to generate tumor-specific cytotoxic T cells. Taken together, our findings offer a major step in fulfilling critical numerical and biological requirements to quickly generate a DLI product ex vivo using a negligible fraction of a cord blood graft that provides a flexible adoptive immunotherapy platform for both children and adults.


Asunto(s)
Sangre Fetal/efectos de los fármacos , Sangre Fetal/trasplante , Inmunoterapia Adoptiva/métodos , Interleucina-7/farmacología , Linfocitos T/efectos de los fármacos , Antígenos CD28/inmunología , Complejo CD3/inmunología , Ligando de CD40/biosíntesis , Ligando de CD40/inmunología , Sangre Fetal/citología , Sangre Fetal/inmunología , Humanos , Leucemia Linfoide/inmunología , Leucemia Linfoide/terapia , Leucemia Mieloide/inmunología , Leucemia Mieloide/terapia , Activación de Linfocitos/efectos de los fármacos , Perforina/biosíntesis , Perforina/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/trasplante , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Células TH1/efectos de los fármacos , Células TH1/inmunología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/biosíntesis , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA