Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Genes Dev ; 30(19): 2158-2172, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27737959

RESUMEN

Compaction of chromosomes is essential for accurate segregation of the genome during mitosis. In vertebrates, two condensin complexes ensure timely chromosome condensation, sister chromatid disentanglement, and maintenance of mitotic chromosome structure. Here, we report that biallelic mutations in NCAPD2, NCAPH, or NCAPD3, encoding subunits of these complexes, cause microcephaly. In addition, hypomorphic Ncaph2 mice have significantly reduced brain size, with frequent anaphase chromatin bridge formation observed in apical neural progenitors during neurogenesis. Such DNA bridges also arise in condensin-deficient patient cells, where they are the consequence of failed sister chromatid disentanglement during chromosome compaction. This results in chromosome segregation errors, leading to micronucleus formation and increased aneuploidy in daughter cells. These findings establish "condensinopathies" as microcephalic disorders, with decatenation failure as an additional disease mechanism for microcephaly, implicating mitotic chromosome condensation as a key process ensuring mammalian cerebral cortex size.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Unión al ADN/genética , Microcefalia/genética , Mitosis/genética , Complejos Multiproteicos/genética , Mutación/genética , Aneuploidia , Animales , Catenanos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Inestabilidad Cromosómica/genética , Segregación Cromosómica/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Micronúcleos con Defecto Cromosómico , Neuronas/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células Madre
2.
Nature ; 548(7668): 461-465, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28738408

RESUMEN

DNA is strictly compartmentalized within the nucleus to prevent autoimmunity; despite this, cyclic GMP-AMP synthase (cGAS), a cytosolic sensor of double-stranded DNA, is activated in autoinflammatory disorders and by DNA damage. Precisely how cellular DNA gains access to the cytoplasm remains to be determined. Here, we report that cGAS localizes to micronuclei arising from genome instability in a mouse model of monogenic autoinflammation, after exogenous DNA damage and spontaneously in human cancer cells. Such micronuclei occur after mis-segregation of DNA during cell division and consist of chromatin surrounded by its own nuclear membrane. Breakdown of the micronuclear envelope, a process associated with chromothripsis, leads to rapid accumulation of cGAS, providing a mechanism by which self-DNA becomes exposed to the cytosol. cGAS is activated by chromatin, and consistent with a mitotic origin, micronuclei formation and the proinflammatory response following DNA damage are cell-cycle dependent. By combining live-cell laser microdissection with single cell transcriptomics, we establish that interferon-stimulated gene expression is induced in micronucleated cells. We therefore conclude that micronuclei represent an important source of immunostimulatory DNA. As micronuclei formed from lagging chromosomes also activate this pathway, recognition of micronuclei by cGAS may act as a cell-intrinsic immune surveillance mechanism that detects a range of neoplasia-inducing processes.


Asunto(s)
Inestabilidad Genómica/inmunología , Inmunidad Innata/genética , Micronúcleos con Defecto Cromosómico , Nucleotidiltransferasas/metabolismo , Animales , Ciclo Celular , Línea Celular Tumoral , Cromatina/metabolismo , Cromotripsis , Citoplasma/enzimología , Citoplasma/genética , ADN/metabolismo , Daño del ADN , Femenino , Inestabilidad Genómica/genética , Humanos , Inflamación/enzimología , Inflamación/genética , Rayos Láser , Masculino , Ratones , Microdisección , Mitosis , Membrana Nuclear/metabolismo , Nucleotidiltransferasas/genética , Análisis de la Célula Individual , Transcriptoma
4.
Am J Hum Genet ; 103(2): 221-231, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30057030

RESUMEN

Bloom syndrome, caused by biallelic mutations in BLM, is characterized by prenatal-onset growth deficiency, short stature, an erythematous photosensitive malar rash, and increased cancer predisposition. Diagnostically, a hallmark feature is the presence of increased sister chromatid exchanges (SCEs) on cytogenetic testing. Here, we describe biallelic mutations in TOP3A in ten individuals with prenatal-onset growth restriction and microcephaly. TOP3A encodes topoisomerase III alpha (TopIIIα), which binds to BLM as part of the BTRR complex, and promotes dissolution of double Holliday junctions arising during homologous recombination. We also identify a homozygous truncating variant in RMI1, which encodes another component of the BTRR complex, in two individuals with microcephalic dwarfism. The TOP3A mutations substantially reduce cellular levels of TopIIIα, and consequently subjects' cells demonstrate elevated rates of SCE. Unresolved DNA recombination and/or replication intermediates persist into mitosis, leading to chromosome segregation defects and genome instability that most likely explain the growth restriction seen in these subjects and in Bloom syndrome. Clinical features of mitochondrial dysfunction are evident in several individuals with biallelic TOP3A mutations, consistent with the recently reported additional function of TopIIIα in mitochondrial DNA decatenation. In summary, our findings establish TOP3A mutations as an additional cause of prenatal-onset short stature with increased cytogenetic SCEs and implicate the decatenation activity of the BTRR complex in their pathogenesis.

5.
Genet Med ; 23(2): 408-414, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33033404

RESUMEN

PURPOSE: Lamins are the major component of nuclear lamina, maintaining structural integrity of the nucleus. Lamin A/C variants are well established to cause a spectrum of disorders ranging from myopathies to progeria, termed laminopathies. Phenotypes resulting from variants in LMNB1 and LMNB2 have been much less clearly defined. METHODS: We investigated exome and genome sequencing from the Deciphering Developmental Disorders Study and the 100,000 Genomes Project to identify novel microcephaly genes. RESULTS: Starting from a cohort of patients with extreme microcephaly, 13 individuals with heterozygous variants in the two human B-type lamins were identified. Recurrent variants were established to be de novo in nine cases and shown to affect highly conserved residues within the lamin ɑ-helical rod domain, likely disrupting interactions required for higher-order assembly of lamin filaments. CONCLUSION: We identify dominant pathogenic variants in LMNB1 and LMNB2 as a genetic cause of primary microcephaly, implicating a major structural component of the nuclear envelope in its etiology and defining a new form of laminopathy. The distinct nature of this lamin B-associated phenotype highlights the strikingly different developmental requirements for lamin paralogs and suggests a novel mechanism for primary microcephaly warranting future investigation.


Asunto(s)
Laminopatías , Microcefalia , Humanos , Lamina Tipo B/genética , Microcefalia/genética
7.
Nature ; 501(7467): 373-9, 2013 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-23995685

RESUMEN

The complexity of the human brain has made it difficult to study many brain disorders in model organisms, highlighting the need for an in vitro model of human brain development. Here we have developed a human pluripotent stem cell-derived three-dimensional organoid culture system, termed cerebral organoids, that develop various discrete, although interdependent, brain regions. These include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes. Furthermore, cerebral organoids are shown to recapitulate features of human cortical development, namely characteristic progenitor zone organization with abundant outer radial glial stem cells. Finally, we use RNA interference and patient-specific induced pluripotent stem cells to model microcephaly, a disorder that has been difficult to recapitulate in mice. We demonstrate premature neuronal differentiation in patient organoids, a defect that could help to explain the disease phenotype. Together, these data show that three-dimensional organoids can recapitulate development and disease even in this most complex human tissue.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Microcefalia/patología , Modelos Biológicos , Organoides/citología , Organoides/crecimiento & desarrollo , Técnicas de Cultivo de Tejidos/métodos , Animales , Encéfalo/anatomía & histología , Encéfalo/citología , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/patología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/patología , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/patología , Neurogénesis , Neuronas/citología , Neuronas/patología , Organoides/embriología , Organoides/patología
9.
J Cell Sci ; 126(Pt 15): 3259-62, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23908378

RESUMEN

Located in the 16th century Wiston House in West Sussex, UK, the 'Building a Centrosome' Workshop was organised by The Company of Biologists and chaired by Fanni Gergely and David Glover (University of Cambridge). Held in March 2013, the Workshop gathered together many of the leaders in the field of centrosome biology, as well as postdocs and students who were given the opportunity to meet and interact with many of the scientists who inspired their early careers. The diverse range of speakers provided a multi-disciplinary forum for the exchange of ideas, and gave fresh impetus to tackling outstanding questions related to centrosome biology. Here, we provide an overview of the meeting and highlight the main themes that were discussed.


Asunto(s)
Centrosoma/fisiología , Animales , Humanos
10.
Am J Ophthalmol ; 207: 87-98, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31077665

RESUMEN

PURPOSE: Familial exudative vitreoretinopathy (FEVR) is a rare finding in patients with genetic forms of microcephaly. This study documents the detailed phenotype and expands the range of genetic heterogeneity. DESIGN: Retrospective case series. METHODS: Twelve patients (10 families) with a diagnosis of FEVR and microcephaly were ascertained from pediatric genetic eye clinics and underwent full clinical assessment including retinal imaging. Molecular investigations included candidate gene Sanger sequencing, whole-exome sequencing (WES), and whole-genome sequencing (WGS). RESULTS: All patients had reduced vision and nystagmus. Six were legally blind. Two probands carried bi-allelic LRP5 variants, both presenting with bilateral retinal folds. A novel homozygous splice variant, and 2 missense variants were identified. Subsequent bone density measurement identified osteoporosis in one proband. Four families had heterozygous KIF11 variants. Two probands had a retinal fold in one eye and chorioretinal atrophy in the other; the other 2 had bilateral retinal folds. Four heterozygous variants were found, including 2 large deletions not identified on Sanger sequencing or WES. Finally, a family of 2 children with learning difficulties, abnormal peripheral retinal vasculogenesis, and rod-cone dystrophy were investigated. They were found to have bi-allelic splicing variants in TUBGCP6. Three families remain unsolved following WES and WGS. CONCLUSIONS: Molecular diagnosis has been achieved in 7 of 10 families investigated, including a previously unrecognized association with LRP5. WGS enabled molecular diagnosis in 3 families after prior negative Sanger sequencing of the causative gene. This has enabled patient-specific care with targeted investigations and accurate family counseling.


Asunto(s)
Anomalías Múltiples , Vitreorretinopatías Exudativas Familiares/genética , Cinesinas/genética , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Microcefalia/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación , Adolescente , Niño , Preescolar , ADN/genética , Análisis Mutacional de ADN , Electrorretinografía , Vitreorretinopatías Exudativas Familiares/diagnóstico , Vitreorretinopatías Exudativas Familiares/metabolismo , Femenino , Angiografía con Fluoresceína , Fondo de Ojo , Humanos , Lactante , Cinesinas/metabolismo , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Microcefalia/diagnóstico , Microcefalia/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Linaje , Fenotipo , Estudios Retrospectivos , Tomografía de Coherencia Óptica
11.
Nat Genet ; 51(1): 96-105, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30478443

RESUMEN

DNA methylation and Polycomb are key factors in the establishment of vertebrate cellular identity and fate. Here we report de novo missense mutations in DNMT3A, which encodes the DNA methyltransferase DNMT3A. These mutations cause microcephalic dwarfism, a hypocellular disorder of extreme global growth failure. Substitutions in the PWWP domain abrogate binding to the histone modifications H3K36me2 and H3K36me3, and alter DNA methylation in patient cells. Polycomb-associated DNA methylation valleys, hypomethylated domains encompassing developmental genes, become methylated with concomitant depletion of H3K27me3 and H3K4me3 bivalent marks. Such de novo DNA methylation occurs during differentiation of Dnmt3aW326R pluripotent cells in vitro, and is also evident in Dnmt3aW326R/+ dwarf mice. We therefore propose that the interaction of the DNMT3A PWWP domain with H3K36me2 and H3K36me3 normally limits DNA methylation of Polycomb-marked regions. Our findings implicate the interplay between DNA methylation and Polycomb at key developmental regulators as a determinant of organism size in mammals.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/genética , Enanismo/genética , Mutación con Ganancia de Función/genética , Microcefalia/genética , Proteínas del Grupo Polycomb/genética , Animales , Línea Celular Tumoral , Células Cultivadas , ADN Metiltransferasa 3A , Metilasas de Modificación del ADN/genética , Femenino , Células HeLa , Histonas/genética , Humanos , Masculino , Ratones , Ratones Transgénicos/genética , Unión Proteica/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética
12.
Nat Genet ; 48(1): 36-43, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26595769

RESUMEN

DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism. We establish that TRAIP relocalizes to sites of DNA damage, where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to ultraviolet (UV) irradiation, as well as fork progression through UV-induced DNA lesions. TRAIP is necessary for efficient cell cycle progression and mutations in TRAIP therefore limit cellular proliferation, providing a potential mechanism for microcephaly and dwarfism phenotypes. Human genetics thus identifies TRAIP as a component of the DNA damage response to replication-blocking DNA lesions.


Asunto(s)
Daño del ADN , Enanismo/genética , Mutación , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Proliferación Celular/genética , Preescolar , Daño del ADN/efectos de la radiación , Facies , Histonas/genética , Histonas/metabolismo , Humanos , Microcefalia/genética , Datos de Secuencia Molecular , Fosforilación , Proteína de Replicación A/metabolismo , Fase S/efectos de la radiación , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Ubiquitina-Proteína Ligasas/genética , Rayos Ultravioleta
13.
Nat Genet ; 46(12): 1283-1292, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25344692

RESUMEN

Centrioles are essential for ciliogenesis. However, mutations in centriole biogenesis genes have been reported in primary microcephaly and Seckel syndrome, disorders without the hallmark clinical features of ciliopathies. Here we identify mutations in the genes encoding PLK4 kinase, a master regulator of centriole duplication, and its substrate TUBGCP6 in individuals with microcephalic primordial dwarfism and additional congenital anomalies, including retinopathy, thereby extending the human phenotypic spectrum associated with centriole dysfunction. Furthermore, we establish that different levels of impaired PLK4 activity result in growth and cilia phenotypes, providing a mechanism by which microcephaly disorders can occur with or without ciliopathic features.


Asunto(s)
Trastornos del Crecimiento/genética , Microcefalia/genética , Mutación , Proteínas Serina-Treonina Quinasas/genética , Degeneración Retiniana/genética , Adolescente , Adulto , Animales , Centriolos/ultraestructura , Niño , Preescolar , Salud de la Familia , Femenino , Fibroblastos/metabolismo , Genotipo , Células HeLa , Humanos , Hibridación Fluorescente in Situ , Lactante , Masculino , Repeticiones de Microsatélite , Proteínas Asociadas a Microtúbulos/genética , Mitosis , Pakistán , Linaje , Fenotipo , Adulto Joven , Pez Cebra
14.
Nat Genet ; 43(4): 350-5, 2011 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-21358633

RESUMEN

Studies into disorders of extreme growth failure (for example, Seckel syndrome and Majewski osteodysplastic primordial dwarfism type II) have implicated fundamental cellular processes of DNA damage response signaling and centrosome function in the regulation of human growth. Here we report that mutations in ORC1, encoding a subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome. We establish that these mutations disrupt known ORC1 functions including pre-replicative complex formation and origin activation. ORC1 deficiency perturbs S-phase entry and S-phase progression. Additionally, we show that Orc1 depletion in zebrafish is sufficient to markedly reduce body size during rapid embryonic growth. Our data suggest a model in which ORC1 mutations impair replication licensing, slowing cell cycle progression and consequently impeding growth during development, particularly at times of rapid proliferation. These findings establish a novel mechanism for the pathogenesis of microcephalic dwarfism and show a surprising but important developmental impact of impaired origin licensing.


Asunto(s)
Enanismo/genética , Microcefalia/genética , Mutación Missense , Complejo de Reconocimiento del Origen/genética , Adolescente , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Niño , Preescolar , Microtia Congénita , Consanguinidad , ADN/genética , Oído/anomalías , Femenino , Estudio de Asociación del Genoma Completo , Trastornos del Crecimiento/genética , Humanos , Lactante , Masculino , Micrognatismo/genética , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Complejo de Reconocimiento del Origen/química , Complejo de Reconocimiento del Origen/deficiencia , Rótula/anomalías , Linaje , Polimorfismo de Nucleótido Simple , Estructura Terciaria de Proteína , Fase S/genética , Arabia Saudita , Homología de Secuencia de Aminoácido , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
15.
Nat Genet ; 40(2): 232-6, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18157127

RESUMEN

Large brain size is one of the defining characteristics of modern humans. Seckel syndrome (MIM 210600), a disorder of markedly reduced brain and body size, is associated with defective ATR-dependent DNA damage signaling. Only a single hypomorphic mutation of ATR has been identified in this genetically heterogeneous condition. We now report that mutations in the gene encoding pericentrin (PCNT)--resulting in the loss of pericentrin from the centrosome, where it has key functions anchoring both structural and regulatory proteins--also cause Seckel syndrome. Furthermore, we find that cells of individuals with Seckel syndrome due to mutations in PCNT (PCNT-Seckel) have defects in ATR-dependent checkpoint signaling, providing the first evidence linking a structural centrosomal protein with DNA damage signaling. These findings also suggest that other known microcephaly genes implicated in either DNA repair responses or centrosomal function may act in common developmental pathways determining human brain and body size.


Asunto(s)
Antígenos/genética , Daño del ADN , Microcefalia/genética , Mutación , Transducción de Señal/genética , Secuencia de Aminoácidos , Antígenos/química , Antígenos/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Secuencia de Bases , Estudios de Casos y Controles , Proteínas de Ciclo Celular/genética , Línea Celular , Cromosomas Humanos Par 22 , Codón , Codón sin Sentido , Consanguinidad , Exones , Mutación del Sistema de Lectura , Genes Recesivos , Ligamiento Genético , Genoma Humano , Homocigoto , Humanos , Escala de Lod , Linfocitos/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Peso Molecular , Mutagénesis Insercional , Análisis de Secuencia por Matrices de Oligonucleótidos , Mapeo Físico de Cromosoma , Polimorfismo de Nucleótido Simple , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Análisis de Secuencia de ADN , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA