Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 32(4): 778-790, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35210353

RESUMEN

More than 90% of genetic variants are rare in most modern sequencing studies, such as the Alzheimer's Disease Sequencing Project (ADSP) whole-exome sequencing (WES) data. Furthermore, 54% of the rare variants in ADSP WES are singletons. However, both single variant and unit-based tests are limited in their statistical power to detect an association between rare variants and phenotypes. To best use missense rare variants and investigate their biological effect, we examine their association with phenotypes in the context of protein structures. We developed a protein structure-based approach, protein optimized kernel evaluation of missense nucleotides (POKEMON), which evaluates rare missense variants based on their spatial distribution within a protein rather than their allele frequency. The hypothesis behind this test is that the three-dimensional spatial distribution of variants within a protein structure provides functional context to power an association test. POKEMON identified three candidate genes (TREM2, SORL1, and EXOC3L4) and another suggestive gene from the ADSP WES data. For TREM2 and SORL1, two known Alzheimer's disease (AD) genes, the signal from the spatial cluster is stable even if we exclude known AD risk variants, indicating the presence of additional low-frequency risk variants within these genes. EXOC3L4 is a novel AD risk gene that has a cluster of variants primarily shared by case subjects around the Sec6 domain. This cluster is also validated in an independent replication data set and a validation data set with a larger sample size.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas de Transporte de Membrana/genética , Mutación Missense , Fenotipo , Secuenciación del Exoma
2.
Hum Mol Genet ; 31(17): 2876-2886, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35383839

RESUMEN

Most Alzheimer's disease (AD)-associated genetic variants do not change protein coding sequence and thus likely exert their effects through regulatory mechanisms. RNA editing, the post-transcriptional modification of RNA bases, is a regulatory feature that is altered in AD patients that differs across ancestral backgrounds. Editing QTLs (edQTLs) are DNA variants that influence the level of RNA editing at a specific site. To study the relationship of DNA variants genome-wide, and particularly in AD-associated loci, with RNA editing, we performed edQTL analyses in self-reported individuals of African American (AF) or White (EU) race with corresponding global genetic ancestry averaging 82.2% African ancestry (AF) and 96.8% European global ancestry (EU) in the two groups, respectively. We used whole-genome genotyping array and RNA sequencing data from peripheral blood of 216 AD cases and 212 age-matched, cognitively intact controls. We identified 2144 edQTLs in AF and 3579 in EU, of which 1236 were found in both groups. Among these, edQTLs in linkage disequilibrium (r2 > 0.5) with AD-associated genetic variants in the SORL1, SPI1 and HLA-DRB1 loci were associated with sites that were differentially edited between AD cases and controls. While there is some shared RNA editing regulatory architecture, most edQTLs had distinct effects on the rate of RNA editing in different ancestral populations suggesting a complex architecture of RNA editing regulation. Altered RNA editing may be one possible mechanism for the functional effect of AD-associated variants and may contribute to observed differences in the genetic etiology of AD between ancestries.


Asunto(s)
Enfermedad de Alzheimer , Edición de ARN , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Población Negra , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Proteínas Relacionadas con Receptor de LDL/metabolismo , Desequilibrio de Ligamiento , Proteínas de Transporte de Membrana/genética , Sitios de Carácter Cuantitativo/genética , Edición de ARN/genética
3.
Nucleic Acids Res ; 50(9): e51, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35100398

RESUMEN

Epigenome-wide association studies often detect many differentially methylated sites, and many are located in distal regulatory regions. To further prioritize these significant sites, there is a critical need to better understand the functional impact of CpG methylation. Recent studies demonstrated that CpG methylation-dependent transcriptional regulation is a widespread phenomenon. Here, we present MethReg, an R/Bioconductor package that analyzes matched DNA methylation and gene expression data, along with external transcription factor (TF) binding information, to evaluate, prioritize and annotate CpG sites with high regulatory potential. At these CpG sites, TF-target gene associations are often only present in a subset of samples with high (or low) methylation levels, so they can be missed by analyses that use all samples. Using colorectal cancer and Alzheimer's disease datasets, we show MethReg significantly enhances our understanding of the regulatory roles of DNA methylation in complex diseases.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Islas de CpG/genética , Metilación de ADN/genética , Estudio de Asociación del Genoma Completo , Transcripción Genética
4.
Alzheimers Dement ; 20(1): 253-265, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37578203

RESUMEN

INTRODUCTION: Multiple infectious agents, including viruses, bacteria, fungi, and protozoa, have been linked to Alzheimer's disease (AD) risk by independent lines of evidence. We explored this association by comparing the frequencies of viral species identified in a large sample of AD cases and controls. METHODS: DNA sequence reads that did not align to the human genome in sequences were mapped to viral reference sequences, quantified, and then were tested for association with AD in whole exome sequences (WES) and whole genome sequences (WGS) datasets. RESULTS: Several viruses were significant predictors of AD according to the machine learning classifiers. Subsequent regression analyses showed that herpes simplex type 1 (HSV-1) (odds ratio [OR] = 3.71, p = 8.03 × 10-4) and human papillomavirus 71 (HPV-71; OR = 3.56, p = 0.02), were significantly associated with AD after Bonferroni correction. The phylogenetic-related cluster of Herpesviridae was significantly associated with AD in several strata of the data (p < 0.01). DISCUSSION: Our results support the hypothesis that viral infection, especially HSV-1, is associated with AD risk.


Asunto(s)
Enfermedad de Alzheimer , Herpes Simple , Herpesvirus Humano 1 , Humanos , Enfermedad de Alzheimer/complicaciones , Filogenia , Herpesvirus Humano 1/genética , ADN
5.
Alzheimers Dement ; 20(2): 1250-1267, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37984853

RESUMEN

BACKGROUND: Women demonstrate a memory advantage when cognitively healthy yet lose this advantage to men in Alzheimer's disease. However, the genetic underpinnings of this sex difference in memory performance remain unclear. METHODS: We conducted the largest sex-aware genetic study on late-life memory to date (Nmales  = 11,942; Nfemales  = 15,641). Leveraging harmonized memory composite scores from four cohorts of cognitive aging and AD, we performed sex-stratified and sex-interaction genome-wide association studies in 24,216 non-Hispanic White and 3367 non-Hispanic Black participants. RESULTS: We identified three sex-specific loci (rs67099044-CBLN2, rs719070-SCHIP1/IQCJ-SCHIP), including an X-chromosome locus (rs5935633-EGL6/TCEANC/OFD1), that associated with memory. Additionally, we identified heparan sulfate signaling as a sex-specific pathway and found sex-specific genetic correlations between memory and cardiovascular, immune, and education traits. DISCUSSION: This study showed memory is highly and comparably heritable across sexes, as well as highlighted novel sex-specific genes, pathways, and genetic correlations that related to late-life memory. HIGHLIGHTS: Demonstrated the heritable component of late-life memory is similar across sexes. Identified two genetic loci with a sex-interaction with baseline memory. Identified an X-chromosome locus associated with memory decline in females. Highlighted sex-specific candidate genes and pathways associated with memory. Revealed sex-specific shared genetic architecture between memory and complex traits.


Asunto(s)
Enfermedad de Alzheimer , Envejecimiento Cognitivo , Humanos , Masculino , Femenino , Estudio de Asociación del Genoma Completo , Enfermedad de Alzheimer/genética , Cognición , Caracteres Sexuales
6.
Alzheimers Dement ; 20(2): 1268-1283, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37985223

RESUMEN

INTRODUCTION: Although large-scale genome-wide association studies (GWAS) have been conducted on AD, few have been conducted on continuous measures of memory performance and memory decline. METHODS: We conducted a cross-ancestry GWAS on memory performance (in 27,633 participants) and memory decline (in 22,365 participants; 129,201 observations) by leveraging harmonized cognitive data from four aging cohorts. RESULTS: We found high heritability for two ancestry backgrounds. Further, we found a novel ancestry locus for memory decline on chromosome 4 (rs6848524) and three loci in the non-Hispanic Black ancestry group for memory performance on chromosomes 2 (rs111471504), 7 (rs4142249), and 15 (rs74381744). In our gene-level analysis, we found novel genes for memory decline on chromosomes 1 (SLC25A44), 11 (BSX), and 15 (DPP8). Memory performance and memory decline shared genetic architecture with AD-related traits, neuropsychiatric traits, and autoimmune traits. DISCUSSION: We discovered several novel loci, genes, and genetic correlations associated with late-life memory performance and decline. HIGHLIGHTS: Late-life memory has high heritability that is similar across ancestries. We discovered four novel variants associated with late-life memory. We identified four novel genes associated with late-life memory. Late-life memory shares genetic architecture with psychiatric/autoimmune traits.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo , Endofenotipos , Predisposición Genética a la Enfermedad/genética , Cognición , Trastornos de la Memoria/genética , Polimorfismo de Nucleótido Simple/genética
7.
Alzheimers Dement ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958117

RESUMEN

INTRODUCTION: Despite a two-fold risk, individuals of African ancestry have been underrepresented in Alzheimer's disease (AD) genomics efforts. METHODS: Genome-wide association studies (GWAS) of 2,903 AD cases and 6,265 controls of African ancestry. Within-dataset results were meta-analyzed, followed by functional genomics analyses. RESULTS: A novel AD-risk locus was identified in MPDZ on chromosome (chr) 9p23 (rs141610415, MAF = 0.002, P = 3.68×10-9). Two additional novel common and nine rare loci were identified with suggestive associations (P < 9×10-7). Comparison of association and linkage disequilibrium (LD) patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 (ASCL1), suggesting that this association is modulated by regional origin of local African ancestry. DISCUSSION: These analyses identified novel AD-associated loci in individuals of African ancestry and suggest that degree of African ancestry modulates some associations. Increased sample sets covering as much African genetic diversity as possible will be critical to identify additional loci and deconvolute local genetic ancestry effects. HIGHLIGHTS: Genetic ancestry significantly impacts risk of Alzheimer's Disease (AD). Although individuals of African ancestry are twice as likely to develop AD, they are vastly underrepresented in AD genomics studies. The Alzheimer's Disease Genetics Consortium has previously identified 16 common and rare genetic loci associated with AD in African American individuals. The current analyses significantly expand this effort by increasing the sample size and extending ancestral diversity by including populations from continental Africa. Single variant meta-analysis identified a novel genome-wide significant AD-risk locus in individuals of African ancestry at the MPDZ gene, and 11 additional novel loci with suggestive genome-wide significance at P < 9×10-7. Comparison of African American datasets with samples of higher degree of African ancestry demonstrated differing patterns of association and linkage disequilibrium at one of these loci, suggesting that degree and/or geographic origin of African ancestry modulates the effect at this locus. These findings illustrate the importance of increasing number and ancestral diversity of African ancestry samples in AD genomics studies to fully disentangle the genetic architecture underlying AD, and yield more effective ancestry-informed genetic screening tools and therapeutic interventions.

8.
Alzheimers Dement ; 19(7): 3148-3157, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36738287

RESUMEN

INTRODUCTION: Our understanding of the genetic predisposition for age-at-onset (AAO) of Alzheimer's disease (AD) is limited. Here, we sought to identify genes modifying AAO and examined whether any have sex-specific effects. METHODS: Genome-wide association analysis were performed on imputed genetic data of 9219 AD cases and 10,345 controls from 20 cohorts of the Alzheimer's Disease Genetics Consortium. AAO was modeled from cases directly and as a survival outcome. RESULTS: We identified 11 genome-wide significant loci (P < 5 × 10-8 ), including six known AD-risk genes and five novel loci, UMAD1, LUZP2, ARFGEF2, DSCAM, and 4q25, affecting AAO of AD. Additionally, 39 suggestive loci showed strong association. Twelve loci showed sex-specific effects on AAO including CD300LG and MLX/TUBG2 for females and MIR4445 for males. DISCUSSION: Genes that influence AAO of AD are excellent therapeutic targets for delaying onset of AD. Several loci identified include genes with promising functional implications for AD.


Asunto(s)
Enfermedad de Alzheimer , Estudio de Asociación del Genoma Completo , Masculino , Femenino , Humanos , Enfermedad de Alzheimer/genética , Edad de Inicio , Predisposición Genética a la Enfermedad/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Proteínas de Unión al ADN/genética
9.
Alzheimers Dement ; 19(12): 5550-5562, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37260021

RESUMEN

INTRODUCTION: Most Alzheimer's disease (AD) loci have been discovered in individuals with European ancestry (EA). METHODS: We applied principal component analysis using Gaussian mixture models and an Ashkenazi Jewish (AJ) reference genome-wide association study (GWAS) data set to identify Ashkenazi Jews ascertained in GWAS (n = 42,682), whole genome sequencing (WGS, n = 16,815), and whole exome sequencing (WES, n = 20,504) data sets. The association of AD was tested genome wide (GW) in the GWAS and WGS data sets and exome wide (EW) in all three data sets (EW). Gene-based analyses were performed using aggregated rare variants. RESULTS: In addition to apolipoprotein E (APOE), GW analyses (1355 cases and 1661 controls) revealed associations with TREM2 R47H (p = 9.66 × 10-9 ), rs541586606 near RAB3B (p = 5.01 × 10-8 ), and rs760573036 between SPOCK3 and ANXA10 (p = 6.32 × 10-8 ). In EW analyses (1504 cases and 2047 controls), study-wide significant association was observed with rs1003710 near SMAP2 (p = 1.91 × 10-7 ). A significant gene-based association was identified with GIPR (p = 7.34 × 10-7 ). DISCUSSION: Our results highlight the efficacy of founder populations for AD genetic studies.


Asunto(s)
Enfermedad de Alzheimer , Estudio de Asociación del Genoma Completo , Humanos , Judíos/genética , Predisposición Genética a la Enfermedad/genética , Enfermedad de Alzheimer/genética , Etnicidad , Polimorfismo de Nucleótido Simple/genética
10.
Alzheimers Dement ; 19(11): 4886-4895, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37051669

RESUMEN

BACKGROUND: Haptoglobin (HP) is an antioxidant of apolipoprotein E (APOE), and previous reports have shown HP binds with APOE and amyloid beta (Aß) to aid its clearance. A common structural variant of the HP gene distinguishes it into two alleles: HP1 and HP2. METHODS: HP genotypes were imputed in 29 cohorts from the Alzheimer's Disease Genetics Consortium (N = 20,512). Associations between the HP polymorphism and Alzheimer's disease (AD) risk and age of onset through APOE interactions were investigated using regression models. RESULTS: The HP polymorphism significantly impacts AD risk in European-descent individuals (and in meta-analysis with African-descent individuals) by modifying both the protective effect of APOE ε2 and the detrimental effect of APOE ε4. The effect is particularly significant among APOE ε4 carriers. DISCUSSION: The effect modification of APOE by HP suggests adjustment and/or stratification by HP genotype is warranted when APOE risk is considered. Our findings also provided directions for further investigations on potential mechanisms behind this association.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Haptoglobinas/genética , Péptidos beta-Amiloides/genética , Alelos , Apolipoproteínas E/genética , Genotipo
11.
Alzheimers Dement ; 19(6): 2538-2548, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36539198

RESUMEN

BACKGROUND: This study used admixture mapping to prioritize the genetic regions associated with Alzheimer's disease (AD) in African American (AA) individuals, followed by ancestry-aware regression analysis to fine-map the prioritized regions. METHODS: We analyzed 10,271 individuals from 17 different AA datasets. We performed admixture mapping and meta-analyzed the results. We then used regression analysis, adjusting for local ancestry main effects and interactions with genotype, to refine the regions identified from admixture mapping. Finally, we leveraged in silico annotation and differential gene expression data to prioritize AD-related variants and genes. RESULTS: Admixture mapping identified two genome-wide significant loci on chromosomes 17p13.2 (p = 2.2 × 10-5 ) and 18q21.33 (p = 1.2 × 10-5 ). Our fine mapping of the chromosome 17p13.2 and 18q21.33 regions revealed several interesting genes such as the MINK1, KIF1C, and BCL2. DISCUSSION: Our ancestry-aware regression approach showed that AA individuals have a lower risk of AD if they inherited African ancestry admixture block at the 17p13.2 locus. HIGHLIGHTS: We identified two genome-wide significant admixture mapping signals: on chromosomes 17p13.2 and 18q21.33, which are novel in African American (AA) populations. Our ancestry-aware regression approach showed that AA individuals have a lower risk of Alzheimer's disease (AD) if they inherited African ancestry admixture block at the 17p13.2 locus. We found that the overall proportion of African ancestry does not differ between the cases and controls that suggest African genetic ancestry alone is not likely to explain the AD prevalence difference between AA and non-Hispanic White populations.


Asunto(s)
Enfermedad de Alzheimer , Predisposición Genética a la Enfermedad , Humanos , Predisposición Genética a la Enfermedad/genética , Negro o Afroamericano/genética , Enfermedad de Alzheimer/genética , Mapeo Cromosómico/métodos , Genotipo , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Cinesinas/genética , Proteínas Serina-Treonina Quinasas/genética
12.
Genet Epidemiol ; 45(3): 249-279, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33075194

RESUMEN

Risk genes influence the chance of an individual developing disease over their lifetime, although the age at onset (AAO) genes influence disease timing. These two categories are not disjoint; a gene that influences AAO might also appear to influence the risk. When an allele influences both AAO and risk, a reasonable question is whether we would have more power to detect association using a statistical test based on risk or AAO. To address this question, we compared power analytically for the Cochran-Armitage trend case-control test for risk and a linear regression case-only test for AAO. We also used simulations to compare the power of these tests with a 2-degree of freedom joint test (which combines the risk and AAO statistics) and the Cox proportional hazards survival model testing AAO (with censored data in controls). We found that when there is little heterogeneity, the case-control risk test has more power than the case-only AAO test (with equivalent sample sizes), but when the model is complex (e.g., with heterogeneity or reduced penetrance), the relationship reverses. The joint test generally outperforms the risk or AAO test alone and ultimately is our recommendation as a powerful alternative in many scenarios.


Asunto(s)
Modelos Genéticos , Edad de Inicio , Alelos , Estudios de Casos y Controles , Humanos , Modelos de Riesgos Proporcionales
13.
Ann Neurol ; 90(1): 76-88, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33938021

RESUMEN

OBJECTIVE: The aim of this study was to search for genes/variants that modify the effect of LRRK2 mutations in terms of penetrance and age-at-onset of Parkinson's disease. METHODS: We performed the first genomewide association study of penetrance and age-at-onset of Parkinson's disease in LRRK2 mutation carriers (776 cases and 1,103 non-cases at their last evaluation). Cox proportional hazard models and linear mixed models were used to identify modifiers of penetrance and age-at-onset of LRRK2 mutations, respectively. We also investigated whether a polygenic risk score derived from a published genomewide association study of Parkinson's disease was able to explain variability in penetrance and age-at-onset in LRRK2 mutation carriers. RESULTS: A variant located in the intronic region of CORO1C on chromosome 12 (rs77395454; p value = 2.5E-08, beta = 1.27, SE = 0.23, risk allele: C) met genomewide significance for the penetrance model. Co-immunoprecipitation analyses of LRRK2 and CORO1C supported an interaction between these 2 proteins. A region on chromosome 3, within a previously reported linkage peak for Parkinson's disease susceptibility, showed suggestive associations in both models (penetrance top variant: p value = 1.1E-07; age-at-onset top variant: p value = 9.3E-07). A polygenic risk score derived from publicly available Parkinson's disease summary statistics was a significant predictor of penetrance, but not of age-at-onset. INTERPRETATION: This study suggests that variants within or near CORO1C may modify the penetrance of LRRK2 mutations. In addition, common Parkinson's disease associated variants collectively increase the penetrance of LRRK2 mutations. ANN NEUROL 2021;90:82-94.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedad de Parkinson/genética , Anciano , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mutación , Penetrancia
14.
PLoS Genet ; 15(6): e1008226, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31199789

RESUMEN

Carbonic anhydrase-8 (CA8) is an intracellular protein that functions as an allosteric inhibitor of inositol trisphosphate receptor-1 (ITPR1) critical to intracellular Ca++ release, synaptic functions and neuronal excitability. We showed previously that murine nociception and analgesic responses are regulated by the expression of this gene in dorsal root ganglion (DRG) associated with a cis-eQTL. In this report, we identify an exon-level cis-eQTL (rs6471859) that regulates human DRG CA8 alternative splicing, producing a truncated 1,697bp transcript (e.g., CA8-204). Our functional genomic studies show the "G" allele at rs6471859 produces a cryptic 3'UTR splice site regulating expression of CA8-204. We developed constructs to study the expression and function of the naturally occurring CA8-204G transcript (G allele at rs6471859), CA8-204C (C allele at rs6471859 reversion mutation) and CA8-201 (full length transcript). CA8-204G transcript expression occurred predominantly in non-neuronal cells (HEK293), while CA8-204C expression was restricted to neuronal derived cells (NBL) in vitro. CA8-204G produced a stable truncated transcript in HEK293 cells that was barely detectable in NBL cells. We also show CA8-204 produces a stable peptide that inhibits pITPR1 and Ca++ release in HEK293 cells. These results imply homozygous G/G individuals at rs6471859, which are common in the general population, produce exclusively CA8-204G that is barely detectable in neuronal cells. CA8 null mutations that greatly impact neuronal functions are associated with severe forms of spinal cerebellar ataxia, and our data suggest G/G homozygotes should display a similar phenotype. To address this question, we show in vivo using AAV8-FLAG-CA8-204G and AAV8-V5-CA8-201 gene transfer delivered via intra-neural sciatic nerve injection (SN), that these viral constructs are able to transduce DRG cells and produce similar analgesic and anti-hyperalgesic responses to inflammatory pain. Immunohistochemistry (IHC) examinations of DRG tissues further show CA8-204G peptide is expressed in advillin expressing neuronal cells, but to a lesser extent compared to glial cells. These findings explain why G/G homozygotes that exclusively produce this truncated functional peptide in DRG evade a severe phenotype. These genomic studies significantly advance the literature regarding structure-function studies on CA8-ITPR1 critical to calcium signaling pathways, synaptic functioning, neuronal excitability and analgesic responses.


Asunto(s)
Biomarcadores de Tumor/genética , Señalización del Calcio/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Neuronas/metabolismo , Dolor/genética , Empalme Alternativo/genética , Animales , Biomarcadores de Tumor/farmacología , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Técnicas de Transferencia de Gen , Células HEK293 , Humanos , Ratones , Mutación/genética , Neuronas/patología , Especificidad de Órganos , Dolor/patología , Péptidos/genética , Péptidos/farmacología , Sitios de Carácter Cuantitativo/genética , Sitios de Empalme de ARN/genética , Nervio Ciático/efectos de los fármacos , Nervio Ciático/metabolismo
15.
Alzheimers Dement ; 18(12): 2403-2412, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35142102

RESUMEN

INTRODUCTION: Alzheimer disease (AD) and related dementias are characterized by damage caused by neuropathological lesions in the brain. These include AD lesions (plaques and tangles) and non-AD lesions such as vascular injury or Lewy bodies. We report here an assessment of lesion association to dementia in a large clinic-based population. METHODS: We identified 5272 individuals with neuropathological data from the National Alzheimer's Coordinating Center. Individual lesions, as well as a neuropathological composite score (NPCS) were tested for association with dementia, and both functional and neurocognitive impairment using regression models. RESULTS: Most individuals exhibited mixed pathologies, especially AD lesions in combination with non-AD lesions. All lesion types were associated with one or more clinical outcomes; most even while controlling for AD pathology. The NPCS was also associated with clinical outcomes. DISCUSSION: These data suggest mixed-type pathologies are extremely common in a clinic-based population and may contribute to dementia and cognitive impairment.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Ovillos Neurofibrilares/patología , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/patología , Encéfalo/patología , Cuerpos de Lewy/patología , Placa Amiloide/patología
16.
Alzheimers Dement ; 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35770850

RESUMEN

INTRODUCTION: Variants in the tau gene (MAPT) region are associated with breast cancer in women and Alzheimer's disease (AD) among persons lacking apolipoprotein E ε4 (ε4-). METHODS: To identify novel genes associated with tau-related pathology, we conducted two genome-wide association studies (GWAS) for AD, one among 10,340 ε4- women in the Alzheimer's Disease Genetics Consortium (ADGC) and another in 31 members (22 women) of a consanguineous Hutterite kindred. RESULTS: We identified novel associations of AD with MGMT variants in the ADGC (rs12775171, odds ratio [OR] = 1.4, P = 4.9 × 10-8 ) and Hutterite (rs12256016 and rs2803456, OR = 2.0, P = 1.9 × 10-14 ) datasets. Multi-omics analyses showed that the most significant and largest number of associations among the single nucleotide polymorphisms (SNPs), DNA-methylated CpGs, MGMT expression, and AD-related neuropathological traits were observed among women. Furthermore, promoter capture Hi-C analyses revealed long-range interactions of the MGMT promoter with MGMT SNPs and CpG sites. DISCUSSION: These findings suggest that epigenetically regulated MGMT expression is involved in AD pathogenesis, especially in women.

17.
Hum Mol Genet ; 28(18): 3053-3061, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31162550

RESUMEN

Little is known about the post-transcriptional mechanisms that modulate the genetic effects in the molecular pathways underlying Alzheimer disease (AD), and even less is known about how these changes might differ across diverse populations. RNA editing, the process that alters individual bases of RNA, may contribute to AD pathogenesis due to its roles in neuronal development and immune regulation. Here, we pursued one of the first transcriptome-wide RNA editing studies in AD by examining RNA sequencing data from individuals of both African-American (AA) and non-Hispanic White (NHW) ethnicities. Whole transcriptome RNA sequencing and RNA editing analysis were performed on peripheral blood specimens from 216 AD cases (105 AA, 111 NHW) and 212 gender matched controls (105 AA, 107 NHW). 449 positions in 254 genes and 723 positions in 371 genes were differentially edited in AA and NHW, respectively. While most differentially edited sites localized to different genes in AA and NHW populations, these events converged on the same pathways across both ethnicities, especially endocytic and inflammatory response pathways. Furthermore, these differentially edited sites were preferentially predicted to disrupt miRNA binding and induce nonsynonymous coding changes in genes previously associated with AD in molecular studies, including PAFAH1B2 and HNRNPA1. These findings suggest RNA editing is an important post-transcriptional regulatory program in AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Edición de ARN , Transducción de Señal , Alelos , Enfermedad de Alzheimer/patología , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Anotación de Secuencia Molecular , Transcriptoma
18.
Arch Sex Behav ; 50(8): 3371-3375, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34080073

RESUMEN

Male sexual orientation is a scientifically and socially important trait shown by family and twin studies to be influenced by environmental and complex genetic factors. Individual genome-wide linkage studies (GWLS) have been conducted, but not jointly analyzed. Two main datasets account for > 90% of the published GWLS concordant sibling pairs on the trait and are jointly analyzed here: MGSOSO (Molecular Genetic Study of Sexual Orientation; 409 concordant sibling pairs in 384 families, Sanders et al. (2015)) and Hamer (155 concordant sibling pairs in 145 families, Mustanski et al. (2005)). We conducted multipoint linkage analyses with Merlin on the datasets separately since they were genotyped differently, integrated genetic marker positions, and combined the resultant LOD (logarithm of the odds) scores at each 1 cM grid position. We continue to find the strongest linkage support at pericentromeric chromosome 8 and chromosome Xq28. We also incorporated the remaining published GWLS dataset (on 55 families) by using meta-analytic approaches on published summary statistics. The meta-analysis has maximized the positional information from GWLS of currently available family resources and can help prioritize findings from genome-wide association studies (GWAS) and other approaches. Although increasing evidence highlights genetic contributions to male sexual orientation, our current understanding of contributory loci is still limited, consistent with the complexity of the trait. Further increasing genetic knowledge about male sexual orientation, especially via large GWAS, should help advance our understanding of the biology of this important trait.


Asunto(s)
Genoma Humano , Estudio de Asociación del Genoma Completo , Femenino , Ligamiento Genético , Humanos , Escala de Lod , Masculino , Conducta Sexual
19.
Arch Sex Behav ; 50(8): 3377-3383, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34518958

RESUMEN

Male sexual orientation is influenced by environmental and complex genetic factors. Childhood gender nonconformity (CGN) is one of the strongest correlates of homosexuality with substantial familiality. We studied brothers in families with two or more homosexual brothers (409 concordant sibling pairs in 384 families, as well as their heterosexual brothers), who self-recalled their CGN. To map loci for CGN, we conducted a genome-wide linkage scan (GWLS) using SNP genotypes. The strongest linkage peaks, each with significant or suggestive two-point LOD scores and multipoint LOD score support, were on chromosomes 5q31 (maximum two-point LOD = 4.45), 6q12 (maximum two-point LOD = 3.64), 7q33 (maximum two-point LOD = 3.09), and 8q24 (maximum two-point LOD = 3.67), with the latter not overlapping with previously reported strongest linkage region for male sexual orientation on pericentromeric chromosome 8. Family-based association analyses were used to identify associated variants in the linkage regions, with a cluster of SNPs (minimum association p = 1.3 × 10-8) found at the 5q31 linkage peak. Genome-wide, clusters of multiple SNPs in the 10-6 to 10-8 p-value range were found at chromosomes 5p13, 5q31, 7q32, 8p22, and 10q23, highlighting glutamate-related genes. This is the first reported GWLS and genome-wide association study on CGN. Further increasing genetic knowledge about CGN and its relationships to male sexual orientation should help advance our understanding of the biology of these associated traits.


Asunto(s)
Identidad de Género , Estudio de Asociación del Genoma Completo , Ligamiento Genético , Heterosexualidad , Homosexualidad Masculina/genética , Humanos , Masculino , Hermanos
20.
Nucleic Acids Res ; 47(17): e98, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31291459

RESUMEN

Recent technology has made it possible to measure DNA methylation profiles in a cost-effective and comprehensive genome-wide manner using array-based technology for epigenome-wide association studies. However, identifying differentially methylated regions (DMRs) remains a challenging task because of the complexities in DNA methylation data. Supervised methods typically focus on the regions that contain consecutive highly significantly differentially methylated CpGs in the genome, but may lack power for detecting small but consistent changes when few CpGs pass stringent significance threshold after multiple comparison. Unsupervised methods group CpGs based on genomic annotations first and then test them against phenotype, but may lack specificity because the regional boundaries of methylation are often not well defined. We present coMethDMR, a flexible, powerful, and accurate tool for identifying DMRs. Instead of testing all CpGs within a genomic region, coMethDMR carries out an additional step that selects co-methylated sub-regions first. Next, coMethDMR tests association between methylation levels within the sub-region and phenotype via a random coefficient mixed effects model that models both variations between CpG sites within the region and differential methylation simultaneously. coMethDMR offers well-controlled Type I error rate, improved specificity, focused testing of targeted genomic regions, and is available as an open-source R package.


Asunto(s)
Islas de CpG/genética , Metilación de ADN/genética , Epigénesis Genética , Epigenómica/métodos , Programas Informáticos , Humanos , Modelos Biológicos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA