Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.472
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 83(10): 1725-1742.e12, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37084731

RESUMEN

Most human proteins lack chemical probes, and several large-scale and generalizable small-molecule binding assays have been introduced to address this problem. How compounds discovered in such "binding-first" assays affect protein function, nonetheless, often remains unclear. Here, we describe a "function-first" proteomic strategy that uses size exclusion chromatography (SEC) to assess the global impact of electrophilic compounds on protein complexes in human cells. Integrating the SEC data with cysteine-directed activity-based protein profiling identifies changes in protein-protein interactions that are caused by site-specific liganding events, including the stereoselective engagement of cysteines in PSME1 and SF3B1 that disrupt the PA28 proteasome regulatory complex and stabilize a dynamic state of the spliceosome, respectively. Our findings thus show how multidimensional proteomic analysis of focused libraries of electrophilic compounds can expedite the discovery of chemical probes with site-specific functional effects on protein complexes in human cells.


Asunto(s)
Proteómica , Factores de Transcripción , Humanos , Proteómica/métodos , Cisteína/metabolismo , Ligandos
2.
CA Cancer J Clin ; 72(4): 333-352, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34902160

RESUMEN

The authors define molecular imaging, according to the Society of Nuclear Medicine and Molecular Imaging, as the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in humans and other living systems. Although practiced for many years clinically in nuclear medicine, expansion to other imaging modalities began roughly 25 years ago and has accelerated since. That acceleration derives from the continual appearance of new and highly relevant animal models of human disease, increasingly sensitive imaging devices, high-throughput methods to discover and optimize affinity agents to key cellular targets, new ways to manipulate genetic material, and expanded use of cloud computing. Greater interest by scientists in allied fields, such as chemistry, biomedical engineering, and immunology, as well as increased attention by the pharmaceutical industry, have likewise contributed to the boom in activity in recent years. Whereas researchers and clinicians have applied molecular imaging to a variety of physiologic processes and disease states, here, the authors focus on oncology, arguably where it has made its greatest impact. The main purpose of imaging in oncology is early detection to enable interception if not prevention of full-blown disease, such as the appearance of metastases. Because biochemical changes occur before changes in anatomy, molecular imaging-particularly when combined with liquid biopsy for screening purposes-promises especially early localization of disease for optimum management. Here, the authors introduce the ways and indications in which molecular imaging can be undertaken, the tools used and under development, and near-term challenges and opportunities in oncology.


Asunto(s)
Oncología Médica , Imagen Molecular , Animales , Humanos , Imagen por Resonancia Magnética , Imagen Molecular/métodos , Tomografía de Emisión de Positrones
3.
Cell ; 159(6): 1404-16, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25480301

RESUMEN

Obesity is associated with increased blood pressure (BP), which in turn increases the risk of cardiovascular diseases. We found that the increase in leptin levels seen in diet-induced obesity (DIO) drives an increase in BP in rodents, an effect that was not seen in animals deficient in leptin or leptin receptors (LepR). Furthermore, humans with loss-of-function mutations in leptin and the LepR have low BP despite severe obesity. Leptin's effects on BP are mediated by neuronal circuits in the dorsomedial hypothalamus (DMH), as blocking leptin with a specific antibody, antagonist, or inhibition of the activity of LepR-expressing neurons in the DMH caused a rapid reduction of BP in DIO mice, independent of changes in weight. Re-expression of LepRs in the DMH of DIO LepR-deficient mice caused an increase in BP. These studies demonstrate that leptin couples changes in weight to changes in BP in mammalian species.


Asunto(s)
Hipertensión/metabolismo , Leptina/metabolismo , Obesidad/metabolismo , Animales , Leptina/genética , Ratones Endogámicos C57BL , Mutación , Neuronas/metabolismo , Obesidad/patología , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Transducción de Señal
4.
Mol Cell ; 81(8): 1617-1630, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33689749

RESUMEN

Multi-dimensional omics profiling continues to illuminate the complexity of cellular processes. Because of difficult mechanistic interpretation of phenotypes induced by slow perturbation, fast experimental setups are increasingly used to dissect causal interactions directly in cells. Here we review a growing body of studies that leverage rapid pharmacological perturbation to delineate causality in gene control. When coupled with kinetically matched readouts, fast chemical genetic tools allow recording of primary phenotypes before confounding secondary effects manifest. The toolbox encompasses directly acting probes, such as active-site inhibitors and proteolysis-targeting chimeras, as well as strategies using genetic engineering to render target proteins chemically tractable, such as analog-sensitive and degron systems. We anticipate that extrapolation of these concepts to single-cell setups will further transform our mechanistic understanding of transcriptional control in the future. Importantly, the concept of leveraging speed to derive causality should be broadly applicable to many aspects of biological regulation.


Asunto(s)
Ingeniería Genética/métodos , Transcripción Genética/genética , Animales , Regulación de la Expresión Génica/genética , Genética , Humanos , Proteolisis
5.
Mol Cell ; 81(15): 3096-3109.e8, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34146481

RESUMEN

Transcription by RNA polymerase II (RNA Pol II) relies on the elongation factors PAF1 complex (PAF), RTF1, and SPT6. Here, we use rapid factor depletion and multi-omics analysis to investigate how these elongation factors influence RNA Pol II elongation activity in human cells. Whereas depletion of PAF subunits PAF1 and CTR9 has little effect on cellular RNA synthesis, depletion of RTF1 or SPT6 strongly compromises RNA Pol II activity, albeit in fundamentally different ways. RTF1 depletion decreases RNA Pol II velocity, whereas SPT6 depletion impairs RNA Pol II progression through nucleosomes. These results show that distinct elongation factors stimulate either RNA Pol II velocity or RNA Pol II progression through chromatin in vivo. Further analysis provides evidence for two distinct barriers to early elongation: the promoter-proximal pause site and the +1 nucleosome. It emerges that the first barrier enables loading of elongation factors that are required to overcome the second and subsequent barriers to transcription.


Asunto(s)
ARN Polimerasa II/metabolismo , ARN/biosíntesis , Factores de Transcripción/metabolismo , Humanos , Células K562 , Nucleosomas/genética , Nucleosomas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Polimerasa II/genética , Factores de Transcripción/genética
6.
Cell ; 153(5): 1064-79, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23706743

RESUMEN

Metabolic adaptation is essential for cell survival during nutrient deprivation. We report that eukaryotic elongation factor 2 kinase (eEF2K), which is activated by AMP-kinase (AMPK), confers cell survival under acute nutrient depletion by blocking translation elongation. Tumor cells exploit this pathway to adapt to nutrient deprivation by reactivating the AMPK-eEF2K axis. Adaptation of transformed cells to nutrient withdrawal is severely compromised in cells lacking eEF2K. Moreover, eEF2K knockdown restored sensitivity to acute nutrient deprivation in highly resistant human tumor cell lines. In vivo, overexpression of eEF2K rendered murine tumors remarkably resistant to caloric restriction. Expression of eEF2K strongly correlated with overall survival in human medulloblastoma and glioblastoma multiforme. Finally, C. elegans strains deficient in efk-1, the eEF2K ortholog, were severely compromised in their response to nutrient depletion. Our data highlight a conserved role for eEF2K in protecting cells from nutrient deprivation and in conferring tumor cell adaptation to metabolic stress. PAPERCLIP:


Asunto(s)
Caenorhabditis elegans/metabolismo , Quinasa del Factor 2 de Elongación/metabolismo , Neoplasias/fisiopatología , Extensión de la Cadena Peptídica de Translación , Transducción de Señal , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Neoplasias Encefálicas/fisiopatología , Caenorhabditis elegans/genética , Supervivencia Celular , Transformación Celular Neoplásica , Quinasa del Factor 2 de Elongación/genética , Privación de Alimentos , Glioblastoma/fisiopatología , Células HeLa , Humanos , Ratones , Ratones Desnudos , Células 3T3 NIH , Trasplante de Neoplasias , Factor 2 de Elongación Peptídica/metabolismo , Trasplante Heterólogo
7.
Mol Cell ; 75(4): 849-858.e8, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442425

RESUMEN

Inducing protein degradation via small molecules is a transformative therapeutic paradigm. Although structural requirements of target degradation are emerging, mechanisms determining the cellular response to small-molecule degraders remain poorly understood. To systematically delineate effectors required for targeted protein degradation, we applied genome-scale CRISPR/Cas9 screens for five drugs that hijack different substrate receptors (SRs) of cullin RING ligases (CRLs) to induce target proteolysis. We found that sensitivity to small-molecule degraders is dictated by shared and drug-specific modulator networks, including the COP9 signalosome and the SR exchange factor CAND1. Genetic or pharmacologic perturbation of these effectors impairs CRL plasticity and arrests a wide array of ligases in a constitutively active state. Resulting defects in CRL decommissioning prompt widespread CRL auto-degradation that confers resistance to multiple degraders. Collectively, our study informs on regulation and architecture of CRLs amenable for targeted protein degradation and outlines biomarkers and putative resistance mechanisms for upcoming clinical investigation.


Asunto(s)
Complejo del Señalosoma COP9/metabolismo , Proteínas Cullin/metabolismo , Proteolisis , Factores de Transcripción/metabolismo , Complejo del Señalosoma COP9/genética , Proteínas Cullin/genética , Humanos , Factores de Transcripción/genética
8.
Physiol Rev ; 99(4): 1877-2013, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31460832

RESUMEN

The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson's disease, and Alzheimer's disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.


Asunto(s)
Bacterias/metabolismo , Encefalopatías/microbiología , Encéfalo/microbiología , Microbioma Gastrointestinal , Intestinos/microbiología , Factores de Edad , Envejecimiento , Animales , Bacterias/inmunología , Bacterias/patogenicidad , Conducta , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Encefalopatías/metabolismo , Encefalopatías/fisiopatología , Encefalopatías/psicología , Disbiosis , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/microbiología , Sistema Nervioso Entérico/fisiopatología , Interacciones Huésped-Patógeno , Humanos , Intestinos/inmunología , Neuroinmunomodulación , Plasticidad Neuronal , Factores de Riesgo
9.
Nat Immunol ; 15(4): 373-83, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24584090

RESUMEN

The transcription factor BATF is required for the differentiation of interleukin 17 (IL-17)-producing helper T cells (TH17 cells) and follicular helper T cells (TFH cells). Here we identified a fundamental role for BATF in regulating the differentiation of effector of CD8(+) T cells. BATF-deficient CD8(+) T cells showed profound defects in effector population expansion and underwent proliferative and metabolic catastrophe early after encountering antigen. BATF, together with the transcription factors IRF4 and Jun proteins, bound to and promoted early expression of genes encoding lineage-specific transcription-factors (T-bet and Blimp-1) and cytokine receptors while paradoxically repressing genes encoding effector molecules (IFN-γ and granzyme B). Thus, BATF amplifies T cell antigen receptor (TCR)-dependent expression of transcription factors and augments the propagation of inflammatory signals but restrains the expression of genes encoding effector molecules. This checkpoint prevents irreversible commitment to an effector fate until a critical threshold of downstream transcriptional activity has been achieved.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Linfocitos T CD8-positivos/inmunología , Proteínas de Dominio T Box/metabolismo , Células Th17/inmunología , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Diferenciación Celular/genética , Procesos de Crecimiento Celular/genética , Células Cultivadas , Regulación hacia Abajo , Granzimas/genética , Granzimas/metabolismo , Factores Reguladores del Interferón/metabolismo , Interferón gamma/genética , Interferón gamma/metabolismo , Activación de Linfocitos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética , Activación Transcripcional/genética
10.
Nature ; 584(7822): 574-578, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32848224

RESUMEN

Atmospheric warming threatens to accelerate the retreat of the Antarctic Ice Sheet by increasing surface melting and facilitating 'hydrofracturing'1-7, where meltwater flows into and enlarges fractures, potentially triggering ice-shelf collapse3-5,8-10. The collapse of ice shelves that buttress11-13 the ice sheet accelerates ice flow and sea-level rise14-16. However, we do not know if and how much of the buttressing regions of Antarctica's ice shelves are vulnerable to hydrofracture if inundated with water. Here we provide two lines of evidence suggesting that many buttressing regions are vulnerable. First, we trained a deep convolutional neural network (DCNN) to map the surface expressions of fractures in satellite imagery across all Antarctic ice shelves. Second, we developed a stability diagram of fractures based on linear elastic fracture mechanics to predict where basal and dry surface fractures form under current stress conditions. We find close agreement between the theoretical prediction and the DCNN-mapped fractures, despite limitations associated with detecting fractures in satellite imagery. Finally, we used linear elastic fracture mechanics theory to predict where surface fractures would become unstable if filled with water. Many regions regularly inundated with meltwater today are resilient to hydrofracture-stresses are low enough that all water-filled fractures are stable. Conversely, 60 ± 10 per cent of ice shelves (by area) both buttress upstream ice and are vulnerable to hydrofracture if inundated with water. The DCNN map confirms the presence of fractures in these buttressing regions. Increased surface melting17 could trigger hydrofracturing if it leads to water inundating the widespread vulnerable regions we identify. These regions are where atmospheric warming may have the largest impact on ice-sheet mass balance.

11.
Nature ; 580(7802): 227-231, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32269351

RESUMEN

Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1-5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3-5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7-10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7-11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Secuestro de Carbono , Bosques , Árboles/metabolismo , Biomasa , Eucalyptus/crecimiento & desarrollo , Eucalyptus/metabolismo , Calentamiento Global/prevención & control , Modelos Biológicos , Nueva Gales del Sur , Fotosíntesis , Suelo/química , Árboles/crecimiento & desarrollo
12.
Proc Natl Acad Sci U S A ; 120(22): e2211087120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216524

RESUMEN

Mutations in genes encoding molecular chaperones can lead to chaperonopathies, but none have so far been identified causing congenital disorders of glycosylation. Here we identified two maternal half-brothers with a novel chaperonopathy, causing impaired protein O-glycosylation. The patients have a decreased activity of T-synthase (C1GALT1), an enzyme that exclusively synthesizes the T-antigen, a ubiquitous O-glycan core structure and precursor for all extended O-glycans. The T-synthase function is dependent on its specific molecular chaperone Cosmc, which is encoded by X-chromosomal C1GALT1C1. Both patients carry the hemizygous variant c.59C>A (p.Ala20Asp; A20D-Cosmc) in C1GALT1C1. They exhibit developmental delay, immunodeficiency, short stature, thrombocytopenia, and acute kidney injury (AKI) resembling atypical hemolytic uremic syndrome. Their heterozygous mother and maternal grandmother show an attenuated phenotype with skewed X-inactivation in blood. AKI in the male patients proved fully responsive to treatment with the complement inhibitor Eculizumab. This germline variant occurs within the transmembrane domain of Cosmc, resulting in dramatically reduced expression of the Cosmc protein. Although A20D-Cosmc is functional, its decreased expression, though in a cell or tissue-specific manner, causes a large reduction of T-synthase protein and activity, which accordingly leads to expression of varied amounts of pathological Tn-antigen (GalNAcα1-O-Ser/Thr/Tyr) on multiple glycoproteins. Transient transfection of patient lymphoblastoid cells with wild-type C1GALT1C1 partially rescued the T-synthase and glycosylation defect. Interestingly, all four affected individuals have high levels of galactose-deficient IgA1 in sera. These results demonstrate that the A20D-Cosmc mutation defines a novel O-glycan chaperonopathy and causes the altered O-glycosylation status in these patients.


Asunto(s)
Lesión Renal Aguda , Chaperonas Moleculares , Masculino , Humanos , Chaperonas Moleculares/metabolismo , Mutación , Polisacáridos/metabolismo , Células Germinativas/metabolismo
13.
Am J Hum Genet ; 109(9): 1605-1619, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007526

RESUMEN

Newborn screening (NBS) dramatically improves outcomes in severe childhood disorders by treatment before symptom onset. In many genetic diseases, however, outcomes remain poor because NBS has lagged behind drug development. Rapid whole-genome sequencing (rWGS) is attractive for comprehensive NBS because it concomitantly examines almost all genetic diseases and is gaining acceptance for genetic disease diagnosis in ill newborns. We describe prototypic methods for scalable, parentally consented, feedback-informed NBS and diagnosis of genetic diseases by rWGS and virtual, acute management guidance (NBS-rWGS). Using established criteria and the Delphi method, we reviewed 457 genetic diseases for NBS-rWGS, retaining 388 (85%) with effective treatments. Simulated NBS-rWGS in 454,707 UK Biobank subjects with 29,865 pathogenic or likely pathogenic variants associated with 388 disorders had a true negative rate (specificity) of 99.7% following root cause analysis. In 2,208 critically ill children with suspected genetic disorders and 2,168 of their parents, simulated NBS-rWGS for 388 disorders identified 104 (87%) of 119 diagnoses previously made by rWGS and 15 findings not previously reported (NBS-rWGS negative predictive value 99.6%, true positive rate [sensitivity] 88.8%). Retrospective NBS-rWGS diagnosed 15 children with disorders that had been undetected by conventional NBS. In 43 of the 104 children, had NBS-rWGS-based interventions been started on day of life 5, the Delphi consensus was that symptoms could have been avoided completely in seven critically ill children, mostly in 21, and partially in 13. We invite groups worldwide to refine these NBS-rWGS conditions and join us to prospectively examine clinical utility and cost effectiveness.


Asunto(s)
Tamizaje Neonatal , Medicina de Precisión , Niño , Enfermedad Crítica , Pruebas Genéticas/métodos , Humanos , Recién Nacido , Tamizaje Neonatal/métodos , Estudios Retrospectivos
14.
N Engl J Med ; 386(5): 415-427, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34891223

RESUMEN

BACKGROUND: Betibeglogene autotemcel (beti-cel) gene therapy for transfusion-dependent ß-thalassemia contains autologous CD34+ hematopoietic stem cells and progenitor cells transduced with the BB305 lentiviral vector encoding the ß-globin (ßA-T87Q) gene. METHODS: In this open-label, phase 3 study, we evaluated the efficacy and safety of beti-cel in adult and pediatric patients with transfusion-dependent ß-thalassemia and a non-ß0/ß0 genotype. Patients underwent myeloablation with busulfan (with doses adjusted on the basis of pharmacokinetic analysis) and received beti-cel intravenously. The primary end point was transfusion independence (i.e., a weighted average hemoglobin level of ≥9 g per deciliter without red-cell transfusions for ≥12 months). RESULTS: A total of 23 patients were enrolled and received treatment, with a median follow-up of 29.5 months (range, 13.0 to 48.2). Transfusion independence occurred in 20 of 22 patients who could be evaluated (91%), including 6 of 7 patients (86%) who were younger than 12 years of age. The average hemoglobin level during transfusion independence was 11.7 g per deciliter (range, 9.5 to 12.8). Twelve months after beti-cel infusion, the median level of gene therapy-derived adult hemoglobin (HbA) with a T87Q amino acid substitution (HbAT87Q) was 8.7 g per deciliter (range, 5.2 to 10.6) in patients who had transfusion independence. The safety profile of beti-cel was consistent with that of busulfan-based myeloablation. Four patients had at least one adverse event that was considered by the investigators to be related or possibly related to beti-cel; all events were nonserious except for thrombocytopenia (in 1 patient). No cases of cancer were observed. CONCLUSIONS: Treatment with beti-cel resulted in a sustained HbAT87Q level and a total hemoglobin level that was high enough to enable transfusion independence in most patients with a non-ß0/ß0 genotype, including those younger than 12 years of age. (Funded by Bluebird Bio; HGB-207 ClinicalTrials.gov number, NCT02906202.).


Asunto(s)
Productos Biológicos/uso terapéutico , Terapia Genética/métodos , Globinas beta/genética , Talasemia beta/terapia , Adolescente , Adulto , Productos Biológicos/efectos adversos , Busulfano/uso terapéutico , Niño , Transfusión de Eritrocitos/efectos adversos , Eritropoyesis , Femenino , Vectores Genéticos , Genotipo , Hemoglobinas/análisis , Humanos , Sobrecarga de Hierro/prevención & control , Lentivirus/genética , Masculino , Persona de Mediana Edad , Agonistas Mieloablativos/uso terapéutico , Talasemia beta/sangre , Talasemia beta/genética
15.
Biol Cell ; 116(4): e2300150, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38444250

RESUMEN

Unraveling the fundamental biological processes underpinning cell functions and behavior remains a key challenge. Researchers working on cell biological processes might want to take a look at microscale cell flow as functionality genesis. This Commentary provides an outlook on how cell-microcirculation interplay promises to lead to exciting insights into the cell biology complexity.


Asunto(s)
Microcirculación
16.
Nature ; 576(7787): 465-470, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31827286

RESUMEN

Tumour-infiltrating lymphocytes are associated with a survival benefit in several tumour types and with the response to immunotherapy1-8. However, the reason some tumours have high CD8 T cell infiltration while others do not remains unclear. Here we investigate the requirements for maintaining a CD8 T cell response against human cancer. We find that CD8 T cells within tumours consist of distinct populations of terminally differentiated and stem-like cells. On proliferation, stem-like CD8 T cells give rise to more terminally differentiated, effector-molecule-expressing daughter cells. For many T cells to infiltrate the tumour, it is critical that this effector differentiation process occur. In addition, we show that these stem-like T cells reside in dense antigen-presenting-cell niches within the tumour, and that tumours that fail to form these structures are not extensively infiltrated by T cells. Patients with progressive disease lack these immune niches, suggesting that niche breakdown may be a key mechanism of immune escape.


Asunto(s)
Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/inmunología , Células Madre/citología , Animales , Presentación de Antígeno/genética , Presentación de Antígeno/inmunología , Linfocitos T CD8-positivos/metabolismo , Progresión de la Enfermedad , Epigénesis Genética , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Humanos , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones , Neoplasias/patología , Nicho de Células Madre/inmunología , Transcripción Genética , Escape del Tumor/genética , Escape del Tumor/inmunología
17.
Proc Natl Acad Sci U S A ; 119(36): e2205629119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037365

RESUMEN

Elimination of autoreactive developing B cells is an important mechanism to prevent autoantibody production. However, how B cell receptor (BCR) signaling triggers apoptosis of immature B cells remains poorly understood. We show that BCR stimulation up-regulates the expression of the lysosomal-associated transmembrane protein 5 (LAPTM5), which in turn triggers apoptosis of immature B cells through two pathways. LAPTM5 causes BCR internalization, resulting in decreased phosphorylation of SYK and ERK. In addition, LAPTM5 targets the E3 ubiquitin ligase WWP2 for lysosomal degradation, resulting in the accumulation of its substrate PTEN. Elevated PTEN levels suppress AKT phosphorylation, leading to increased FOXO1 expression and up-regulation of the cell cycle inhibitor p27Kip1 and the proapoptotic molecule BIM. In vivo, LAPTM5 is involved in the elimination of autoreactive B cells and its deficiency exacerbates autoantibody production. Our results reveal a previously unidentified mechanism that contributes to immature B cell apoptosis and B cell tolerance.


Asunto(s)
Apoptosis , Tolerancia Inmunológica , Proteínas de la Membrana , Células Precursoras de Linfocitos B , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteína Forkhead Box O1/metabolismo , Humanos , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Fosfohidrolasa PTEN/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
18.
Circulation ; 147(2): 122-131, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36537288

RESUMEN

BACKGROUND: Taking fewer than the widely promoted "10 000 steps per day" has recently been associated with lower risk of all-cause mortality. The relationship of steps and cardiovascular disease (CVD) risk remains poorly described. A meta-analysis examining the dose-response relationship between steps per day and CVD can help inform clinical and public health guidelines. METHODS: Eight prospective studies (20 152 adults [ie, ≥18 years of age]) were included with device-measured steps and participants followed for CVD events. Studies quantified steps per day and CVD events were defined as fatal and nonfatal coronary heart disease, stroke, and heart failure. Cox proportional hazards regression analyses were completed using study-specific quartiles and hazard ratios (HR) and 95% CI were meta-analyzed with inverse-variance-weighted random effects models. RESULTS: The mean age of participants was 63.2±12.4 years and 52% were women. The mean follow-up was 6.2 years (123 209 person-years), with a total of 1523 CVD events (12.4 per 1000 participant-years) reported. There was a significant difference in the association of steps per day and CVD between older (ie, ≥60 years of age) and younger adults (ie, <60 years of age). For older adults, the HR for quartile 2 was 0.80 (95% CI, 0.69 to 0.93), 0.62 for quartile 3 (95% CI, 0.52 to 0.74), and 0.51 for quartile 4 (95% CI, 0.41 to 0.63) compared with the lowest quartile. For younger adults, the HR for quartile 2 was 0.79 (95% CI, 0.46 to 1.35), 0.90 for quartile 3 (95% CI, 0.64 to 1.25), and 0.95 for quartile 4 (95% CI, 0.61 to 1.48) compared with the lowest quartile. Restricted cubic splines demonstrated a nonlinear association whereby more steps were associated with decreased risk of CVD among older adults. CONCLUSIONS: For older adults, taking more daily steps was associated with a progressively decreased risk of CVD. Monitoring and promoting steps per day is a simple metric for clinician-patient communication and population health to reduce the risk of CVD.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad Coronaria , Insuficiencia Cardíaca , Humanos , Femenino , Anciano , Persona de Mediana Edad , Masculino , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Estudios Prospectivos , Factores de Riesgo , Insuficiencia Cardíaca/complicaciones , Enfermedad Coronaria/epidemiología
19.
Int J Cancer ; 154(5): 816-829, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37860893

RESUMEN

Adolescent and young adults (AYA) with germ cell tumours (GCT) have poorer survival rates than children and many older adults with the same cancers. There are several likely contributing factors to this, including the treatment received. The prognostic benefit of intended dose intensity is well documented in GCT from trials comparing regimens. However, evidence specific to AYA is limited by poor recruitment of AYA to trials and dose delivery outside trials not being well examined. We examined the utility of cancer registration data and a clinical trials dataset to investigate the delivery of relative dose intensity (RDI) in routine National Health Service practice in England, compared to within international clinical trials. Linked data from the Cancer Outcomes and Services Dataset (COSD) and the Systemic Anti-Cancer Therapy (SACT) dataset, and data from four international clinical trials were analysed. Survival over time was described using Kaplan-Meier estimation; overall, by age category, International Germ-Cell Cancer Collaborative Group (IGCCCG) classification, stage, tumour subtype, primary site, ethnicity and deprivation. Cox regression models were used to determine the fully adjusted effect of RDI on mortality risk. The quality of both datasets was critically evaluated and clinically enhanced. RDI was found to be well maintained in all datasets with higher RDIs associated with improved survival outcomes. Real-world data demonstrated several strengths, including population coverage and inclusion of sociodemographic variables and comorbidity. It is limited in GCT however, by the poor completion of data items enabling risk classification of patients and a higher proportion of missing data.


Asunto(s)
Neoplasias de Células Germinales y Embrionarias , Neoplasias , Niño , Humanos , Adolescente , Adulto Joven , Anciano , Exactitud de los Datos , Medicina Estatal , Neoplasias/epidemiología , Neoplasias de Células Germinales y Embrionarias/epidemiología , Pronóstico
20.
N Engl J Med ; 385(20): 1868-1880, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34758253

RESUMEN

BACKGROUND: The U.K. 100,000 Genomes Project is in the process of investigating the role of genome sequencing in patients with undiagnosed rare diseases after usual care and the alignment of this research with health care implementation in the U.K. National Health Service. Other parts of this project focus on patients with cancer and infection. METHODS: We conducted a pilot study involving 4660 participants from 2183 families, among whom 161 disorders covering a broad spectrum of rare diseases were present. We collected data on clinical features with the use of Human Phenotype Ontology terms, undertook genome sequencing, applied automated variant prioritization on the basis of applied virtual gene panels and phenotypes, and identified novel pathogenic variants through research analysis. RESULTS: Diagnostic yields varied among family structures and were highest in family trios (both parents and a proband) and families with larger pedigrees. Diagnostic yields were much higher for disorders likely to have a monogenic cause (35%) than for disorders likely to have a complex cause (11%). Diagnostic yields for intellectual disability, hearing disorders, and vision disorders ranged from 40 to 55%. We made genetic diagnoses in 25% of the probands. A total of 14% of the diagnoses were made by means of the combination of research and automated approaches, which was critical for cases in which we found etiologic noncoding, structural, and mitochondrial genome variants and coding variants poorly covered by exome sequencing. Cohortwide burden testing across 57,000 genomes enabled the discovery of three new disease genes and 19 new associations. Of the genetic diagnoses that we made, 25% had immediate ramifications for clinical decision making for the patients or their relatives. CONCLUSIONS: Our pilot study of genome sequencing in a national health care system showed an increase in diagnostic yield across a range of rare diseases. (Funded by the National Institute for Health Research and others.).


Asunto(s)
Genoma Humano , Enfermedades Raras/genética , Adolescente , Adulto , Niño , Preescolar , Composición Familiar , Femenino , Variación Genética , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Reacción en Cadena de la Polimerasa , Enfermedades Raras/diagnóstico , Sensibilidad y Especificidad , Medicina Estatal , Reino Unido , Secuenciación Completa del Genoma , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA