Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Clin Immunol ; 261: 110164, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38417765

RESUMEN

Multiple vaccines have been approved to control COVID-19 pandemic, with Pfizer/BioNTech (BNT162b2) being widely used. We conducted a longitudinal analysis of the immune response elicited after three doses of the BNT162b2 vaccine in individuals who have previously experienced SARS-CoV-2 infection and in unexperienced ones. We conducted immunological analyses and single-cell transcriptomics of circulating T and B lymphocytes, combined to CITE-seq or LIBRA-seq, and VDJ-seq. We found that antibody levels against SARS-CoV-2 Spike, NTD and RBD from wild-type, delta and omicron VoCs show comparable dynamics in both vaccination groups, with a peak after the second dose, a decline after six months and a restoration after the booster dose. The antibody neutralization activity was maintained, with lower titers against the omicron variant. Spike-specific memory B cell response was sustained over the vaccination schedule. Clonal analysis revealed that Spike-specific B cells were polyclonal, with a partial clone conservation from natural infection to vaccination. Spike-specific T cell responses were oriented towards effector and effector memory phenotypes, with similar trends in unexperienced and experienced individuals. The CD8 T cell compartment showed a higher clonal expansion and persistence than CD4 T cells. The first two vaccinations doses tended to induce new clones rather than promoting expansion of pre-existing clones. However, we identified a fraction of Spike-specific CD8 T cell clones persisting from natural infection that were boosted by vaccination and clones specifically induced by vaccination. Collectively, our observations revealed a moderate effect of the second dose in enhancing the immune responses elicited after the first vaccination. Differently, we found that a third dose was necessary to restore comparable levels of neutralizing antibodies and Spike-specific T and B cell responses in individuals who experienced a natural SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Vacunas , Humanos , COVID-19/prevención & control , Vacuna BNT162 , SARS-CoV-2 , Pandemias , Vacunación , Anticuerpos Neutralizantes , Anticuerpos Antivirales
2.
FASEB J ; 33(11): 12099-12111, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31442074

RESUMEN

The 4 component meningococcus B vaccine (4CMenB) vaccine is the first vaccine containing recombinant proteins licensed for the prevention of invasive meningococcal disease caused by meningococcal serogroup B strains. 4CMenB contains 3 main recombinant proteins, including the Neisseria meningitidis factor H binding protein (fHbp), a lipoprotein able to bind the human factor H. To date, over 1000 aa sequences of fHbp have been identified, and they can be divided into variant groups 1, 2, and 3, which are usually not crossprotective. Nevertheless, previous characterizations of a small set (n = 10) of mAbs generated in humans after 4CMenB immunization revealed 2 human Fabs (huFabs) (1A12, 1G3) with some crossreactivity for variants 1, 2, and 3. This unexpected result prompted us to examine a much larger set of human mAbs (n = 110), with the aim of better understanding the extent and nature of crossreactive anti-fHbp antibodies. In this study, we report an analysis of the human antibody response to fHbp, by the characterization of 110 huFabs collected from 3 adult vaccinees during a 6-mo study. Although the 4CMenB vaccine contains fHbp variant 1, 13 huFabs were also found to be crossreactive with variants 2 and 3. The crystal structure of the crossreactive huFab 1E6 in complex with fHbp variant 3 was determined, revealing a novel, highly conserved epitope distinct from the epitopes recognized by 1A12 or 1G3. Further, functional characterization shows that human mAb 1E6 is able to elicit rabbit, but not human, complement-mediated bactericidal activity against meningococci displaying fHbp from any of the 3 different variant groups. This functional and structural information about the human antibody response upon 4CMenB immunization contributes to further unraveling the immunogenic properties of fHbp. Knowledge gained about the epitope profile recognized by the human antibody repertoire could guide future vaccine design.-Bianchi, F., Veggi, D., Santini, L., Buricchi, F., Bartolini, E., Lo Surdo, P., Martinelli, M., Finco, O., Masignani, V., Bottomley, M. J., Maione, D., Cozzi, R. Cocrystal structure of meningococcal factor H binding protein variant 3 reveals a new crossprotective epitope recognized by human mAb 1E6.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Factor H de Complemento/inmunología , Epítopos/inmunología , Vacunas Meningococicas/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Cristalografía por Rayos X , Epítopos/genética , Epítopos/metabolismo , Variación Genética , Humanos , Infecciones Meningocócicas/microbiología , Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/administración & dosificación , Modelos Moleculares , Neisseria meningitidis/efectos de los fármacos , Neisseria meningitidis/inmunología , Neisseria meningitidis/fisiología , Unión Proteica , Conformación Proteica
3.
J Biol Inorg Chem ; 21(2): 185-96, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26711661

RESUMEN

Proteases are commonly secreted by microorganisms. In some pathogens, they can play a series of functional roles during infection, including maturation of cell surface or extracellular virulence factors, interference with host cell signaling, massive host tissue destruction, and dissolution of infection-limiting clots through degradation of the host proteins devoted to the coagulation cascade. We previously reported the identification and characterization of Zmp1, a zinc-dependent metalloprotease secreted by Clostridium difficile, demonstrated that Zmp1 is able to degrade fibrinogen in vitro, and identified two residues necessary to the catalytic activity. In the present work, we solved the solution structure of Zmp1 by Nuclear Magnetic Resonance (NMR) and compared it with the recently solved X-ray structures of substrate-bound and substrate-free Zmp1, highlighting similarities and differences. We also combined the structural characterization to biochemical assays and site-directed mutagenesis, to provide new insights into the catalytic site and on the residues responsible for substrate specificity. The Zmp1 structure showed similarity to the catalytic domain of Anthrax Lethal Factor of Bacillus anthracis. Analogies and differences in the catalytic and in the substrate-binding sites of the two proteins are discussed.


Asunto(s)
Clostridioides difficile/enzimología , Metaloproteasas/química , Secuencia de Aminoácidos , Espectroscopía de Resonancia Magnética , Conformación Proteica , Homología de Secuencia de Ácido Nucleico
4.
FASEB J ; 29(11): 4629-40, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26202865

RESUMEN

Group B Streptococcus (GBS) expresses 3 structurally distinct pilus types (1, 2a, and 2b) identified as important virulence factors and vaccine targets. These pili are heterotrimeric polymers, covalently assembled on the cell wall by sortase (Srt) enzymes. We investigated the pilus-2b biogenesis mechanism by using a multidisciplinary approach integrating genetic, biochemical, and structural studies to dissect the role of the 2 pilus-2b-associated Srts. We show that only 1 sortase (SrtC1-2b) is responsible for pilus protein polymerization, whereas the second one (Srt2-2b) does not act as a pilin polymerase, but similarly to the housekeeping class A Srt (SrtA), it is involved in cell-wall pilus anchoring by targeting the minor ancillary subunit. Based on its function and sequence features, Srt2-2b does not belong to class C Srts (SrtCs), nor is it a canonical member of any other known family of Srts. We also report the crystal structure of SrtC1-2b at 1.9 Å resolution. The overall fold resembles the typical structure of SrtCs except for the N-terminal lid region that appears in an open conformation displaced from the active site. Our findings reveal that GBS pilus type 2b biogenesis differs significantly from the current model of pilus assembly in gram-positive pathogens.


Asunto(s)
Proteínas Bacterianas/química , Cisteína Endopeptidasas/química , Fimbrias Bacterianas/enzimología , Streptococcus agalactiae/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Fimbrias Bacterianas/genética , Estructura Terciaria de Proteína , Streptococcus agalactiae/genética
5.
Appl Environ Microbiol ; 80(7): 2176-85, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24487536

RESUMEN

Streptococcus agalactiae, also known as group B Streptococcus (GBS), is a primary colonizer of the anogenital mucosa of up to 40% of healthy women and an important cause of invasive neonatal infections worldwide. Among the 10 known capsular serotypes, GBS type III accounts for 30 to 76% of the cases of neonatal meningitis. In recent years, the ability of GBS to form biofilm attracted attention for its possible role in fitness and virulence. Here, a new in vitro biofilm formation protocol was developed to guarantee more stringent conditions, to better discriminate between strong-, low-, and non-biofilm-forming strains, and to facilitate interpretation of data. This protocol was used to screen the biofilm-forming abilities of 366 GBS clinical isolates from pregnant women and from neonatal infections of different serotypes in relation to medium composition and pH. The results identified a subset of isolates of serotypes III and V that formed strong biofilms under acidic conditions. Importantly, the best biofilm formers belonged to serotype III hypervirulent clone ST-17. Moreover, the abilities of proteinase K to strongly inhibit biofilm formation and to disaggregate mature biofilms suggested that proteins play an essential role in promoting GBS biofilm initiation and contribute to biofilm structural stability.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Streptococcus agalactiae/efectos de los fármacos , Streptococcus agalactiae/fisiología , Proteínas Bacterianas/metabolismo , Técnicas Bacteriológicas/métodos , Endopeptidasa K/metabolismo , Femenino , Humanos , Concentración de Iones de Hidrógeno , Recién Nacido , Tamizaje Masivo/métodos , Embarazo , Proteolisis , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/aislamiento & purificación
6.
FASEB J ; 27(8): 3144-54, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23631841

RESUMEN

Gram-positive bacteria build pili on their cell surface via a class C sortase-catalyzed transpeptidation mechanism from pilin protein substrates. Despite the availability of several crystal structures, pilus-related C sortases remain poorly characterized to date, and their mechanisms of transpeptidation and regulation need to be further investigated. The available 3-dimensional structures of these enzymes reveal a typical sortase fold, except for the presence of a unique feature represented by an N-terminal highly flexible loop known as the "lid." This region interacts with the residues composing the catalytic triad and covers the active site, thus maintaining the enzyme in an autoinhibited state and preventing the accessibility to the substrate. It is believed that enzyme activation may occur only after lid displacement from the catalytic domain. In this work, we provide the first direct evidence of the regulatory role of the lid, demonstrating that it is possible to obtain in vitro an efficient polymerization of pilin subunits using an active C sortase lid mutant carrying a single residue mutation in the lid region. Moreover, biochemical analyses of this recombinant mutant reveal that the lid confers thermodynamic and proteolytic stability to the enzyme.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Fimbrias Bacterianas/enzimología , Streptococcus agalactiae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Aminoaciltransferasas/química , Aminoaciltransferasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Western Blotting , Dominio Catalítico , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fluorometría , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Mutación , Filogenia , Polimerizacion , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteolisis , Streptococcus agalactiae/genética
7.
Infect Immun ; 81(8): 2851-60, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23716610

RESUMEN

Clostridium difficile is a spore-forming bacterium that can reside in animals and humans. C. difficile infection causes a variety of clinical symptoms, ranging from diarrhea to fulminant colitis. Disease is mediated by TcdA and TcdB, two large enterotoxins released by C. difficile during colonization of the gut. In this study, we evaluated the ability of recombinant toxin fragments to induce neutralizing antibodies in mice. The protective efficacies of the most promising candidates were then evaluated in a hamster model of disease. While limited protection was observed with some combinations, coadministration of a cell binding domain fragment of TcdA (TcdA-B1) and the glucosyltransferase moiety of TcdB (TcdB-GT) induced systemic IgGs which neutralized both toxins and protected vaccinated animals from death following challenge with two strains of C. difficile. Further characterization revealed that despite high concentrations of toxin in the gut lumens of vaccinated animals during the acute phase of the disease, pathological damage was minimized. Assessment of gut contents revealed the presence of TcdA and TcdB antibodies, suggesting that systemic vaccination with this pair of recombinant polypeptides can limit the disease caused by toxin production during C. difficile infection.


Asunto(s)
Proteínas Bacterianas/inmunología , Toxinas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Infecciones por Clostridium/inmunología , Enterotoxinas/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Anticuerpos Neutralizantes/inmunología , Antígenos Bacterianos/inmunología , Clostridioides difficile/inmunología , Infecciones por Clostridium/prevención & control , Cricetinae , Modelos Animales de Enfermedad , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Humanos , Immunoblotting , Ratones , Proteínas Recombinantes/inmunología
8.
Microb Cell Fact ; 12: 12, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23374160

RESUMEN

BACKGROUND: In past years research has focused on the development of alternative Gram positive bacterial expression systems to produce industrially relevant proteins. Brevibacillus choshinensis is an easy to handle non-sporulating bacterium, lacking extracellular proteases, that has been already shown to provide a high level of recombinant protein expression. One major drawback, limiting the applicability of the Brevibacillus expression system, is the absence of expression vectors based on inducible promoters. Here we used the PxylA inducible promoter, commonly employed in other Bacillae expression systems, in Brevibacillus. RESULTS: Using GFP, α-amylase and TcdA-GT as model proteins, high level of intracellular protein expression (up to 250 mg/L for the GFP) was achieved in Brevibacillus, using the pHis1522 vector carrying the B. megaterium xylose-inducible promoter (PxylA). The GFP expression yields were more than 25 fold higher than those reported for B. megaterium carrying the same vector. All the tested proteins show significant increment in their expression levels (2-10 folds) than those obtained using the available plasmids based on the P2 constitutive promoter. CONCLUSION: Combining the components of two different commercially available Gram positive expression systems, such as Brevibacillus (from Takara Bio) and B. megaterium (from Mobitec), we demonstrate that vectors based on the B. megaterium PxylA xylose inducible promoter can be successfully used to induce high level of intracellular expression of heterologous proteins in Brevibacillus.


Asunto(s)
Brevibacillus/metabolismo , Regiones Promotoras Genéticas , Xilosa/metabolismo , Isomerasas Aldosa-Cetosa/genética , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Enterotoxinas/genética , Enterotoxinas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , alfa-Amilasas/genética , alfa-Amilasas/metabolismo
9.
Front Immunol ; 14: 1194087, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426665

RESUMEN

Colorectal cancer (CRC) is a leading cause of cancer-associated death. In the tumor site, the interplay between effector immune cells and cancer cells determines the balance between tumor elimination or outgrowth. We discovered that the protein TMEM123 is over-expressed in tumour-infiltrating CD4 and CD8 T lymphocytes and it contributes to their effector phenotype. The presence of infiltrating TMEM123+ CD8+ T cells is associated with better overall and metastasis-free survival. TMEM123 localizes in the protrusions of infiltrating T cells, it contributes to lymphocyte migration and cytoskeleton organization. TMEM123 silencing modulates the underlying signaling pathways dependent on the cytoskeletal regulator WASP and the Arp2/3 actin nucleation complex, which are required for synaptic force exertion. Using tumoroid-lymphocyte co-culture assays, we found that lymphocytes form clusters through TMEM123, anchoring to cancer cells and contributing to their killing. We propose an active role for TMEM123 in the anti-cancer activity of T cells within tumour microenvironment.


Asunto(s)
Neoplasias Colorrectales , Linfocitos Infiltrantes de Tumor , Humanos , Linfocitos T CD8-positivos , Técnicas de Cocultivo , Transducción de Señal , Microambiente Tumoral
11.
FASEB J ; 25(6): 1874-86, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21357525

RESUMEN

In group B Streptococcus (GBS), 3 structurally distinct types of pili have been discovered as potential virulence factors and vaccine candidates. The pilus-forming proteins are assembled into high-molecular-weight polymers via a transpeptidation mechanism mediated by specific class C sortases. Using a multidisciplinary approach including bioinformatics, structural and biochemical studies, and in vivo mutagenesis, we performed a broad characterization of GBS sortase C1 of pilus island 2a. The high-resolution X-ray structure of the enzyme revealed that the active site, into the ß-barrel core of the enzyme, is made of the catalytic triad His157-Cys219-Arg228 and covered by a loop, known as the "lid." We show that the catalytic triad and the predicted N- and C-terminal transmembrane regions are required for the enzyme activity. Interestingly, by in vivo complementation mutagenesis studies, we found that the deletion of the entire lid loop or mutations in specific lid key residues had no effect on catalytic activity of the enzyme. In addition, kinetic characterizations of recombinant enzymes indicate that the lid mutants can still recognize and cleave the substrate-mimicking peptide at least as well as the wild-type protein.


Asunto(s)
Aminoaciltransferasas/química , Aminoaciltransferasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Fimbrias Bacterianas/enzimología , Regulación Bacteriana de la Expresión Génica/fisiología , Streptococcus agalactiae/enzimología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Calcio/metabolismo , Cristalografía por Rayos X , Cisteína Endopeptidasas/metabolismo , Prueba de Complementación Genética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Filogenia , Plásmidos , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Alineación de Secuencia , Streptococcus agalactiae/genética
12.
Proc Natl Acad Sci U S A ; 105(19): 6803-8, 2008 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-18458339

RESUMEN

The human protein Cox17 contains three pairs of cysteines. In the mitochondrial intermembrane space (IMS) it exists in a partially oxidized form with two S-S bonds and two reduced cysteines (HCox17(2S-S)). HCox17(2S-S) is involved in copper transfer to the human cochaperones Sco1 and Cox11, which are implicated in the assembly of cytochrome c oxidase. We show here that Cu(I)HCox17(2S-S), i.e., the copper-loaded form of the protein, can transfer simultaneously copper(I) and two electrons to the human cochaperone Sco1 (HSco1) in the oxidized state, i.e., with its metal-binding cysteines forming a disulfide bond. The result is Cu(I)HSco1 and the fully oxidized apoHCox17(3S-S), which can be then reduced by glutathione to apoHCox17(2S-S). The HSco1/HCox17(2S-S) redox reaction is thermodynamically driven by copper transfer. These reactions may occur in vivo because HSco1 can be found in the partially oxidized state within the IMS, consistent with the variable redox properties of the latter compartment. The electron transfer-coupled metallation of HSco1 can be a mechanism within the IMS for an efficient specific transfer of the metal to proteins, where metal-binding thiols are oxidized. The same reaction of copper-electron-coupled transfer does not occur with the human homolog of Sco1, HSco2, for kinetic reasons that may be ascribed to the lack of a specific metal-bridged protein-protein complex, which is instead observed in the Cu(I)HCox17(2S-S)/HSco1 interaction.


Asunto(s)
Proteínas Portadoras/metabolismo , Cobre/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Transporte Biológico , Proteínas Portadoras/química , Proteínas Transportadoras de Cobre , Cisteína/metabolismo , Transporte de Electrón , Humanos , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/química , Modelos Biológicos , Chaperonas Moleculares , Oxidación-Reducción , Subunidades de Proteína/metabolismo , Espectrometría de Masa por Ionización de Electrospray
13.
Antimicrob Agents Chemother ; 54(2): 637-42, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20008782

RESUMEN

Resistance to antimicrobial agents is emerging in a wide variety of nosocomial and community-acquired pathogens. The development of alternative therapies against nosocomial infections caused by clinically relevant pathogens represents a major public health concern. RLP068/Cl is a novel Zn(II) phthalocyanine proposed as a photosensitizer suitable for antimicrobial photodynamic therapy (APDT) for localized infections. Its ability, following activation by light, to induce resistance in three major human pathogens after 20 daily passages was studied. Simultaneously for the same strains, the ability of daily sequential subcultures in subinhibitory concentrations of RLP068/Cl to develop resistant mutants without illumination was evaluated. We demonstrate that 20 consecutive APDT treatments with RLP068/Cl did not result in any resistant mutants and that, in dark conditions, only Staphylococcus aureus strains had increased MICs of RLP068/Cl. However, even in this case, the susceptibility of the mutated bacteria to APDT was not affected by their MIC increase.


Asunto(s)
Antiinfecciosos/farmacología , Indoles/farmacología , Compuestos Organometálicos/farmacología , Fármacos Fotosensibilizantes/farmacología , Antiinfecciosos/química , Farmacorresistencia Bacteriana/efectos de la radiación , Humanos , Indoles/química , Isoindoles , Luz , Pruebas de Sensibilidad Microbiana , Compuestos Organometálicos/química , Fármacos Fotosensibilizantes/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/efectos de la radiación
14.
Structure ; 15(9): 1132-40, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17850752

RESUMEN

Human Sco2 is a mitochondrial membrane-bound protein involved in copper supply for the assembly of cytochrome c oxidase in eukaryotes. Its precise action is not yet understood. We report here a structural and dynamic characterization by NMR of the apo and copper(I) forms of the soluble fragment. The structural and metal binding features of human Cu(I)Sco2 are similar to the more often studied Sco1 homolog, although the dynamic properties and the conformational disorder are quite different when the apo forms and the copper(I)-loaded forms of the two proteins are compared separately. Such differences are accounted for in terms of the different physicochemical properties in strategic protein locations. The misfunction of the known pathogenic mutations is discussed on the basis of the obtained structure.


Asunto(s)
Proteínas Portadoras/química , Proteínas Mitocondriales/química , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Chaperonas Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Mutación Puntual , Conformación Proteica , Homología de Secuencia de Aminoácido
15.
Sci Rep ; 9(1): 17014, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31745113

RESUMEN

Enterohemorrhagic E. coli (EHEC) is a major cause of large outbreaks worldwide associated with hemorrhagic colitis and hemolytic uremic syndrome. While vaccine development is warranted, a licensed vaccine, specific for human use, against EHEC is not yet available. In this study, the reverse vaccinology approach combined with genomic, transcriptional and molecular epidemiology data was applied on the EHEC O157:H7 genome to select new potential vaccine candidates. Twenty-four potential protein antigens were identified and one of them (MC001) was successfully expressed onto Generalized Modules for Membrane Antigens (GMMA) delivery system. GMMA expressing this vaccine candidate was immunogenic, raising a specific antibody response. Immunization with the MC001 candidate was able to reduce the bacterial load of EHEC O157:H7 strain in feces, colon and caecum tissues after murine infection. MC001 is homologue to lipid A deacylase enzyme (LpxR), and to our knowledge, this is the first study describing it as a potential vaccine candidate. Gene distribution and sequence variability analysis showed that MC001 is present and conserved in EHEC and in enteropathogenic E. coli (EPEC) strains. Given the high genetic variability among and within E. coli pathotypes, the identification of such conserved antigen suggests that its inclusion in a vaccine might represent a solution against major intestinal pathogenic strains.


Asunto(s)
Hidrolasas de Éster Carboxílico/inmunología , Infecciones por Escherichia coli/prevención & control , Escherichia coli O157/inmunología , Proteínas de Escherichia coli/inmunología , Vacunas contra Escherichia coli/inmunología , Síndrome Hemolítico-Urémico/prevención & control , Animales , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Infecciones por Escherichia coli/microbiología , Síndrome Hemolítico-Urémico/microbiología , Ratones , Ratones Endogámicos BALB C
16.
PLoS One ; 13(3): e0194662, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29579105

RESUMEN

Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein specific for Neisseria and constitutes one of the three main protein antigens of the Bexsero vaccine. Meningococcal and human proteases, cleave NHBA protein upstream or downstream of a conserved Arg-rich region, respectively. The cleavage results in the release of the C-terminal portion of the protein. The C-terminal fragment originating from the processing of meningococcal proteases, referred to as C2 fragment, exerts a toxic effect on endothelial cells altering the endothelial permeability. In this work, we reported that recombinant C2 fragment has no influence on the integrity of human airway epithelial cell monolayers, consistent with previous findings showing that Neisseria meningitidis traverses the epithelial barrier without disrupting the junctional structures. We showed that epithelial cells constantly secrete proteases responsible for a rapid processing of C2 fragment, generating a new fragment that does not contain the Arg-rich region, a putative docking domain reported to be essential for C2-mediated toxic effect. Moreover, we found that the C3-convertase of the alternative complement pathway is one of the proteases responsible for this processing. Overall, our data provide new insights on the cleavage of NHBA protein during meningococcal infection. NHBA cleavage may occur at different stages of the infection, and it likely has a different role depending on the environment the bacterium is interacting with.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/metabolismo , C3 Convertasa de la Vía Alternativa del Complemento/metabolismo , Neisseria/metabolismo , Secuencia de Aminoácidos , Antígenos Bacterianos/química , Proteínas de la Membrana Bacteriana Externa/química , Proteínas Portadoras/química , Línea Celular , Ácido Edético/farmacología , Células Epiteliales/citología , Células Epiteliales/enzimología , Células Epiteliales/metabolismo , Humanos , Magnesio/química , Magnesio/metabolismo , Péptido Hidrolasas/metabolismo , Proteolisis/efectos de los fármacos , Proteómica , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Zinc/química , Zinc/metabolismo
17.
mBio ; 6(2): e02575, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25714719

RESUMEN

UNLABELLED: LytM proteins belong to a family of bacterial metalloproteases. In Gram-negative bacteria, LytM factors are mainly reported to have a direct effect on cell division by influencing cleavage and remodeling of peptidoglycan. In this study, mining nontypeable Haemophilus influenzae (NTHI) genomes, three highly conserved open reading frames (ORFs) containing a LytM domain were identified, and the proteins encoded by the ORFs were named YebA, EnvC, and NlpD on the basis of their homology with the Escherichia coli proteins. Immunoblotting and confocal analysis showed that while NTHI NlpD is exposed on the bacterial surface, YebA and EnvC reside in the periplasm. NTHI ΔyebA and ΔnlpD deletion mutants revealed an aberrant division phenotype characterized by an altered cell architecture and extensive membrane blebbing. The morphology of the ΔenvC deletion mutant was identical to that of the wild-type strain, but it showed a drastic reduction of periplasmic proteins, including the chaperones HtrA, SurA, and Skp, and an accumulation of ß-barrel-containing outer membrane proteins comprising the autotransporters Hap, IgA serine protease, and HMW2A, as observed by proteomic analysis. These data suggest that EnvC may influence the bacterial surface protein repertoire by facilitating the passage of the periplasmic chaperones through the peptidoglycan layer to the close vicinity of the inner face of the outer membrane. This hypothesis was further corroborated by the fact that an NTHI envC defective strain had an impaired capacity to adhere to epithelial cells and to form biofilm. Notably, this strain also showed a reduced serum resistance. These results suggest that LytM factors are not only important components of cell division but they may also influence NTHI physiology and pathogenesis by affecting membrane composition. IMPORTANCE: Nontypeable Haemophilus influenzae (NTHI) is an opportunistic pathogen that colonizes the human nasopharynx and can cause serious infections in children (acute otitis media) and adults (chronic obstructive pulmonary disease). Several virulence factors are well studied, but the complete scenario of NTHI pathogenesis is still unclear. We identified and characterized three NTHI LytM factors homologous to the Escherichia coli LytM proteins. Although LytM factors are reported to play a crucial role in the cell division process, in NTHI they are also involved in other bacterial functions. In particular, YebA and NlpD are fundamental for membrane stability: indeed, their absence causes an increased release of outer membrane vesicles (OMVs). On the other hand, our data suggest that EnvC could directly or indirectly affect peptidoglycan permeability and consequently, bacterial periplasmic and outer membrane protein distribution. Interestingly, by modulating the surface composition of virulence determinants, EnvC also has an impact on NTHI pathogenesis.


Asunto(s)
División Celular , Membrana Celular/química , Haemophilus influenzae/enzimología , Haemophilus influenzae/fisiología , Metaloproteasas/metabolismo , Adhesión Bacteriana , Pared Celular/química , Células Cultivadas , Biología Computacional , Células Epiteliales/microbiología , Eliminación de Gen , Haemophilus influenzae/genética , Haemophilus influenzae/patogenicidad , Humanos , Sistemas de Lectura Abierta , Periplasma/química , Homología de Secuencia de Aminoácido , Virulencia , Factores de Virulencia
18.
Biophys Chem ; 190-191: 32-40, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24820901

RESUMEN

α-Defensins (e.g. human neutrophil peptides, HNPs) have a broad spectrum bactericidal activity contributing to human innate immunity. The positive charge of amino acid side chains is responsible for the first interaction of cationic antimicrobial peptides with negatively charged bacterial membranes. α-Defensins contain a high content of Arg residues compared to Lys. In this paper, different peptide analogs including substitution of Arg-14 respectively with N(G)-N(G')-asymmetric dimethyl-l-arginine (ADMA), N(G)-N(G')-symmetric dimethyl-l-arginine (SDMA) and Lys (R14K and R15KR14KR15K) variants have been studied to test the role of Arg guanidino group and the localized cationic charge of Lys for interaction with lipid membranes. Our findings show that all the variants have a decreased disruptive activity against the bilayer. The methylated analogs show a reduction in membrane partitioning due to the lack of their ability to form hydrogen bonds. Comparison with the native HNP-1 peptide has been discussed.


Asunto(s)
Arginina/química , Membrana Dobles de Lípidos/química , Lisina/química , Lípidos de la Membrana/química , alfa-Defensinas/química , Cationes/química , Humanos , Modelos Moleculares
19.
PLoS One ; 8(11): e81306, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24303041

RESUMEN

Clostridium difficile is a major cause of infectious diarrhea worldwide. Although the cell surface proteins are recognized to be important in clostridial pathogenesis, biological functions of only a few are known. Also, apart from the toxins, proteins exported by C. difficile into the extracellular milieu have been poorly studied. In order to identify novel extracellular factors of C. difficile, we analyzed bacterial culture supernatants prepared from clinical isolates, 630 and R20291, using liquid chromatography-tandem mass spectrometry. The majority of the proteins identified were non-canonical extracellular proteins. These could be largely classified into proteins associated to the cell wall (including CWPs and extracellular hydrolases), transporters and flagellar proteins. Seven unknown hypothetical proteins were also identified. One of these proteins, CD630_28300, shared sequence similarity with the anthrax lethal factor, a known zinc metallopeptidase. We demonstrated that CD630_28300 (named Zmp1) binds zinc and is able to cleave fibronectin and fibrinogen in vitro in a zinc-dependent manner. Using site-directed mutagenesis, we identified residues important in zinc binding and enzymatic activity. Furthermore, we demonstrated that Zmp1 destabilizes the fibronectin network produced by human fibroblasts. Thus, by analyzing the exoproteome of C. difficile, we identified a novel extracellular metalloprotease that may be important in key steps of clostridial pathogenesis.


Asunto(s)
Clostridioides difficile/metabolismo , Metaloproteasas/metabolismo , Proteómica , Zinc/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catálisis , Clostridioides difficile/genética , Activación Enzimática , Espacio Extracelular/metabolismo , Fibrinógeno/metabolismo , Fibroblastos , Fibronectinas/metabolismo , Humanos , Metaloproteasas/química , Metaloproteasas/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Transporte de Proteínas , Proteolisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
20.
FEBS J ; 279(17): 3085-97, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22747490

RESUMEN

Clostridiumdifficile toxin A (TcdA) is a member of the large clostridial toxin family, and is responsible, together with C. difficile toxin B (TcdB), for many clinical symptoms d ring human infections. Like other large clostridial toxins, TcdA catalyzes the glucosylation of GTPases, and is able to inactivate small GTPases within the host cell. Here, we report the crystal structures of the TcdA glucosyltransferase domain (TcdA-GT) in the apo form and in the presence of Mn(2+) and hydrolyzed UDP-glucose. These structures, together with the recently reported crystal structure of TcdA-GT bound to UDP-glucose, provide a detailed understanding of the conformational changes of TcdA that occur during the catalytic cycle. Indeed, we present a new intermediate conformation of a so-called 'lid' loop (residues 510-522 in TcdA), concomitant with the absence of glucose in the catalytic domain. The recombinant TcdA was expressed in Brevibacillus in the inactive apo form. High thermal stability of wild-type TcdA was observed only after the addition of both Mn(2+) and UDP-glucose. The glucosylhydrolase activity, which is readily restored after reconstitution with both these cofactors, was similar to that reported for TcdB. Interestingly, we found that ammonium, like K(+) , is able to activate the UDP-glucose hydrolase activities of TcdA. Consequently, the presence of ammonium in the crystallization buffer enabled us to obtain the first crystal structure of TcdA-GT bound to the hydrolysis product UDP.


Asunto(s)
Toxinas Bacterianas/química , Clostridioides difficile/metabolismo , Enterotoxinas/química , Glicosiltransferasas/metabolismo , Manganeso/metabolismo , Uridina Difosfato/metabolismo , Toxinas Bacterianas/metabolismo , Enterotoxinas/metabolismo , Activación Enzimática , Hidrólisis , Modelos Moleculares , Unión Proteica , Conformación Proteica , Compuestos de Amonio Cuaternario/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA