Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38904979

RESUMEN

Temperature elevation drastically affects plant defense responses to Ralstonia solanacearum and inhibits the major source of resistance in Arabidopsis thaliana, mediated by the receptor pair RRS1-R/RPS4. In this study, we refined a previous Genome-Wide Association (GWA) mapping analysis by using a local score approach and detected the primary cell wall CESA3 gene as a major gene involved in plant response to R. solanacearum at both 27°C and elevated temperature, 30°C. We functionally validated CESA3 as a susceptibility gene involved in resistance to R. solanacearum at both 27°C and 30°C through a reverse genetic approach. We provide evidence that the cesa3mre1 mutant enhances resistance to bacterial disease and that resistance is associated with an alteration of root cell morphology conserved at elevated temperature. However, even by forcing the entry of the bacterium to bypass the primary cell wall barrier, the cesa3mre1 mutant still showed enhanced resistance to R. solanacearum with delayed onset of bacterial wilt symptoms. We demonstrated that the cesa3mre1 mutant had constitutive expression of the defense-related gene VSP1 which is up-regulated at elevated temperature and that during infection its expression level is maintained higher than in the wild-type Col-0. In conclusion, this study reveals that alteration of the primary cell wall by mutating the cellulose synthase subunit CESA3 contributes to enhanced resistance to R. solanacearum, remaining effective under heat stress. We expect that these results will help to identify robust genetic sources of resistance to R. solanacearum in the context of global warming.

2.
Nature ; 520(7545): 90-3, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25807486

RESUMEN

MicroRNAs (miRNAs) are small regulatory RNA molecules that inhibit the expression of specific target genes by binding to and cleaving their messenger RNAs or otherwise inhibiting their translation into proteins. miRNAs are transcribed as much larger primary transcripts (pri-miRNAs), the function of which is not fully understood. Here we show that plant pri-miRNAs contain short open reading frame sequences that encode regulatory peptides. The pri-miR171b of Medicago truncatula and the pri-miR165a of Arabidopsis thaliana produce peptides, which we term miPEP171b and miPEP165a, respectively, that enhance the accumulation of their corresponding mature miRNAs, resulting in downregulation of target genes involved in root development. The mechanism of miRNA-encoded peptide (miPEP) action involves increasing transcription of the pri-miRNA. Five other pri-miRNAs of A. thaliana and M. truncatula encode active miPEPs, suggesting that miPEPs are widespread throughout the plant kingdom. Synthetic miPEP171b and miPEP165a peptides applied to plants specifically trigger the accumulation of miR171b and miR165a, leading to reduction of lateral root development and stimulation of main root growth, respectively, suggesting that miPEPs might have agronomical applications.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , MicroARNs/genética , Péptidos/genética , Proteínas de Plantas/genética , Precursores del ARN/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Medicago truncatula/genética , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/metabolismo , Sistemas de Lectura Abierta/genética , Proteínas de Plantas/biosíntesis , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transcripción Genética/genética
3.
Mol Plant Microbe Interact ; 33(2): 223-234, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31544656

RESUMEN

Streptomycetes are soil-dwelling, filamentous actinobacteria and represent a prominent bacterial clade inside the plant root microbiota. The ability of streptomycetes to produce a broad spectrum of antifungal metabolites suggests that these bacteria could be used to manage plant diseases. Here, we describe the identification of a soil Streptomyces strain named AgN23 which strongly activates a large array of defense responses when applied on Arabidopsis thaliana leaves. AgN23 increased the biosynthesis of salicylic acid, leading to the development of salicylic acid induction deficient 2 (SID2)-dependent necrotic lesions. Size exclusion fractionation of plant elicitors secreted by AgN23 showed that these signals are tethered into high molecular weight complexes. AgN23 mycelium was able to colonize the leaf surface, leading to plant resistance against Alternaria brassicicola infection in wild-type Arabidopsis plants. AgN23-induced resistance was found partially compromised in salicylate, jasmonate, and ethylene mutants. Our data show that Streptomyces soil bacteria can develop at the surface of plant leaves to induce defense responses and protection against foliar fungal pathogens, extending their potential use to manage plant diseases.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Resistencia a la Enfermedad , Micosis , Streptomyces , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Resistencia a la Enfermedad/fisiología , Regulación de la Expresión Génica de las Plantas , Mutación , Ácido Salicílico/metabolismo , Microbiología del Suelo , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo
4.
J Exp Bot ; 71(11): 3350-3360, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32185389

RESUMEN

The non-animal peroxidases belong to a superfamily of oxidoreductases that reduce hydrogen peroxide and oxidize numerous substrates. Since their initial characterization in 1992, a number of studies have provided an understanding of the origin and evolution of this protein family. Here, we report a comprehensive evolutionary analysis of non-animal peroxidases using integrated in silico and biochemical approaches. Thanks to the availability of numerous genomic sequences from more than 2500 species belonging to 14 kingdoms together with expert and comprehensive annotation of peroxidase sequences that have been centralized in a dedicated database, we have been able to use phylogenetic reconstructions to increase our understanding of the evolutionary processes underlying the diversification of non-animal peroxidases. We analysed the distribution of all non-animal peroxidases in more than 200 eukaryotic organisms in silico. First, we show that the presence or absence of non-animal peroxidases correlates with the presence or absence of certain organelles or with specific biological processes. Examination of almost 2000 organisms determined that ascorbate peroxidases (APxs) and cytochrome c peroxidases (CcPs) are present in those containing chloroplasts and mitochondria, respectively. Plants, which contain both organelles, are an exception and contain only APxs without CcP. Class II peroxidases (CII Prxs) are only found in fungi with wood-decay and plant-degradation abilities. Class III peroxidases (CIII Prxs) are only found in streptophyte algae and land plants, and have been subjected to large family expansion. Biochemical activities of APx, CcP, and CIII Prx assessed using protein extracts from 30 different eukaryotic organisms support the distribution of the sequences resulting from our in silico analysis. The biochemical results confirmed both the presence and classification of the non-animal peroxidase encoding sequences.


Asunto(s)
Hongos , Peroxidasas , Ascorbato Peroxidasas , Peroxidasas/genética , Filogenia , Plantas
5.
Int J Mol Sci ; 21(8)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344718

RESUMEN

Eucalypts are the most planted trees worldwide, but most of them are frost sensitive. Overexpressing transcription factors for CRT-repeat binding factors (CBFs) in transgenic Eucalyptus confer cold resistance both in leaves and stems. While wood plays crucial roles in trees and is affected by environmental cues, its potential role in adaptation to cold stress has been neglected. Here, we addressed this question by investigating the changes occurring in wood in response to the overexpression of two CBFs, taking advantage of available transgenic Eucalyptus lines. We performed histological, biochemical, and transcriptomic analyses on xylem samples. CBF ectopic expression led to a reduction of both primary and secondary growth, and triggered changes in xylem architecture with smaller and more frequent vessels and fibers exhibiting reduced lumens. In addition, lignin content and syringyl/guaiacyl (S/G) ratio increased. Consistently, many genes of the phenylpropanoid and lignin branch pathway were upregulated. Most of the features of xylem remodeling induced by CBF overexpression are reminiscent of those observed after long exposure of Eucalyptus trees to chilling temperatures. Altogether, these results suggest that CBF plays a central role in the cross-talk between response to cold and wood formation and that the remodeling of wood is part of the adaptive strategies to face cold stress.


Asunto(s)
Respuesta al Choque por Frío , Factores de Unión al Sitio Principal/genética , Eucalyptus/genética , Expresión Génica , Factores de Transcripción/genética , Madera/anatomía & histología , Madera/genética , Factores de Unión al Sitio Principal/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Lignina/metabolismo , Fenotipo , Plantas Modificadas Genéticamente , Factores de Transcripción/metabolismo , Madera/química , Xilema/genética , Xilema/metabolismo
6.
Plant Physiol ; 174(2): 700-716, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28184011

RESUMEN

Hydathodes are water pores found on leaves of a wide range of vascular plants and are the sites of guttation. We report here on the detailed anatomy of cauliflower (Brassicaoleracea) and Arabidopsis (Arabidopsis thaliana) hydathodes. Hydathode surface presents pores resembling stomata giving access to large cavities. Beneath, the epithem is composed of a lacunar and highly vascularized parenchyma offering a direct connection between leaf surface and xylem vessels. Arabidopsis hydathode pores were responsive to ABA and light similar to stomata. The flg22 flagellin peptide, a well-characterized elicitor of plant basal immunity, did not induce closure of hydathode pores in contrast to stomata. Because hydathodes are natural infection routes for several pathogens, we investigated hydathode infection by the adapted vascular phytopathogenic bacterium Xanthomonas campestris pv campestris (Xcc), the causal agent of black rot disease of Brassicaceae. Microscopic observations of hydathodes six days postinoculation indicated a digestion of the epithem cells and a high bacterial multiplication. Postinvasive immunity was shown to limit pathogen growth in the epithem and is actively suppressed by the type III secretion system and its effector proteins. Altogether, these results give a detailed anatomic description of Brassicaceae hydathodes and highlight the efficient use of this tissue as an initial niche for subsequent vascular systemic dissemination of Xcc in distant plant tissues.


Asunto(s)
Brassica/anatomía & histología , Brassica/inmunología , Enfermedades de las Plantas/inmunología , Xanthomonas campestris/patogenicidad , Ácido Abscísico/farmacología , Arabidopsis/anatomía & histología , Arabidopsis/efectos de los fármacos , Arabidopsis/inmunología , Arabidopsis/microbiología , Brassica/microbiología , Interacciones Huésped-Patógeno , Hojas de la Planta/microbiología , Estomas de Plantas/anatomía & histología , Plantas Modificadas Genéticamente , Xanthomonas campestris/genética
7.
Ann Bot ; 120(3): 417-426, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28633407

RESUMEN

Background and Aims: The plant Hirtella physophora, the ant Allomerus decemarticulatus and a fungus, Trimmatostroma sp., form a tripartite association. The ants manipulate both the plant trichomes and the fungus to build galleries under the stems of their host plant used to capture prey. In addition to its structural role, the fungus also improves nutrient uptake by the host plant. But it still remains unclear whether the fungus plays an indirect or a direct role in transferring nutrients to the plant. This study aimed to trace the transfer of N from the fungus to the plant's stem tissue. Methods: Optical microscopy and transmission electron microscopy (TEM) were used to investigate the presence of fungal hyphae in the stem tissues. Then, a 15N-labelling experiment was combined with a nanoscale secondary-ion mass spectrometry (NanoSIMS 50) isotopic imaging approach to trace the movement of added 15N from the fungus to plant tissues. Key Results: The TEM images clearly showed hyphae inside the stem tissue in the cellular compartment. Also, fungal hyphae were seen perforating the wall of the parenchyma cell. The 15N provisioning of the fungus in the galleries resulted in significant enrichment of the 15N signature of the plant's leaves 1 d after the 15N-labelling solution was deposited on the fungus-bearing trap. Finally, NanoSIMS imaging proved that nitrogen was transferred biotrophically from the fungus to the stem tissue. Conclusions: This study provides evidence that the fungi are connected endophytically to an ant-plant system and actively transfer nitrogen from 15N-labelling solution to the plant's stem tissues. Overall, this study underlines how complex the trophic structure of ant-plant interactions is due to the presence of the fungus and provides insight into the possibly important nutritional aspects and tradeoffs involved in myrmecophyte-ant mutualisms.


Asunto(s)
Hormigas/fisiología , Ascomicetos/fisiología , Chrysobalanaceae/fisiología , Nitrógeno/metabolismo , Simbiosis , Animales , Isótopos de Nitrógeno/análisis
8.
Plant Biotechnol J ; 14(6): 1381-93, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26579999

RESUMEN

Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage-specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time-consuming and inefficient transformation systems available hitherto for eucalypts. To overcome this limitation, we developed a fast, reliable and efficient protocol to obtain and easily detect co-transformed E. grandis hairy roots using fluorescent markers, with an average efficiency of 62%. We set up conditions both to cultivate excised roots in vitro and to harden composite plants and verified that hairy root morphology and vascular system anatomy were similar to wild-type ones. We further demonstrated that co-transformed hairy roots are suitable for medium-throughput functional studies enabling, for instance, protein subcellular localization, gene expression patterns through RT-qPCR and promoter expression, as well as the modulation of endogenous gene expression. Down-regulation of the Eucalyptus cinnamoyl-CoA reductase1 (EgCCR1) gene, encoding a key enzyme in lignin biosynthesis, led to transgenic roots with reduced lignin levels and thinner cell walls. This gene was used as a proof of concept to demonstrate that the function of genes involved in secondary cell wall biosynthesis and wood formation can be elucidated in transgenic hairy roots using histochemical, transcriptomic and biochemical approaches. The method described here is timely because it will accelerate gene mining of the genome for both basic research and industry purposes.


Asunto(s)
Eucalyptus/genética , Regulación de la Expresión Génica de las Plantas , Madera/genética , Biomasa , Pared Celular/química , Pared Celular/genética , Pared Celular/metabolismo , Eucalyptus/crecimiento & desarrollo , Eucalyptus/metabolismo , Perfilación de la Expresión Génica/métodos , Silenciador del Gen , Genoma de Planta , Lignina/genética , Lignina/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Técnicas de Cultivo de Tejidos , Madera/crecimiento & desarrollo , Madera/metabolismo , Xilema/genética , Xilema/crecimiento & desarrollo , Xilema/metabolismo
9.
New Phytol ; 210(2): 602-17, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26700936

RESUMEN

To successfully colonize their host, pathogens produce effectors that can interfere with host cellular processes. Here we investigated the function of CRN13 candidate effectors produced by plant pathogenic oomycetes and detected in the genome of the amphibian pathogenic chytrid fungus Batrachochytrium dendrobatidis (BdCRN13). When expressed in Nicotiana, AeCRN13, from the legume root pathogen Aphanomyces euteiches, increases the susceptibility of the leaves to the oomycete Phytophthora capsici. When transiently expressed in amphibians or plant cells, AeCRN13 and BdCRN13 localize to the cell nuclei, triggering aberrant cell development and eventually causing cell death. Using Förster resonance energy transfer experiments in plant cells, we showed that both CRN13s interact with nuclear DNA and trigger plant DNA damage response (DDR). Mutating key amino acid residues in a predicted HNH-like endonuclease motif abolished the interaction of AeCRN13 with DNA, the induction of DDR and the enhancement of Nicotiana susceptibility to P. capsici. Finally, H2AX phosphorylation, a marker of DNA damage, and enhanced expression of genes involved in the DDR were observed in A. euteiches-infected Medicago truncatula roots. These results show that CRN13 from plant and animal eukaryotic pathogens promotes host susceptibility by targeting nuclear DNA and inducing DDR.


Asunto(s)
Aphanomyces/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Células Eucariotas/metabolismo , Medicago truncatula/microbiología , Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Núcleo Celular/metabolismo , Tamaño de la Célula , ADN de Plantas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación de la Expresión Génica de las Plantas , Microinyecciones , Phytophthora/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Unión Proteica , Transporte de Proteínas , Nicotiana/microbiología , Xenopus laevis/embriología
10.
BMC Plant Biol ; 14: 256, 2014 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-25260963

RESUMEN

BACKGROUND: Nitrogen (N) is a main nutrient required for tree growth and biomass accumulation. In this study, we analyzed the effects of contrasting nitrogen fertilization treatments on the phenotypes of fast growing Eucalyptus hybrids (E. urophylla x E. grandis) with a special focus on xylem secondary cell walls and global gene expression patterns. RESULTS: Histological observations of the xylem secondary cell walls further confirmed by chemical analyses showed that lignin was reduced by luxuriant fertilization, whereas a consistent lignin deposition was observed in trees grown in N-limiting conditions. Also, the syringyl/guaiacyl (S/G) ratio was significantly lower in luxuriant nitrogen samples. Deep sequencing RNAseq analyses allowed us to identify a high number of differentially expressed genes (1,469) between contrasting N treatments. This number is dramatically higher than those obtained in similar studies performed in poplar but using microarrays. Remarkably, all the genes involved the general phenylpropanoid metabolism and lignin pathway were found to be down-regulated in response to high N availability. These findings further confirmed by RT-qPCR are in agreement with the reduced amount of lignin in xylem secondary cell walls of these plants. CONCLUSIONS: This work enabled us to identify, at the whole genome level, xylem genes differentially regulated by N availability, some of which are involved in the environmental control of xylogenesis. It further illustrates that N fertilization can be used to alter the quantity and quality of lignocellulosic biomass in Eucalyptus, offering exciting prospects for the pulp and paper industry and for the use of short coppices plantations to produce second generation biofuels.


Asunto(s)
Pared Celular/metabolismo , Eucalyptus/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lignina/metabolismo , Nitrógeno/farmacología , Xilema/efectos de los fármacos , Eucalyptus/genética , Eucalyptus/metabolismo , Fertilizantes , Fenotipo , Árboles , Madera/efectos de los fármacos , Madera/metabolismo , Xilema/genética , Xilema/metabolismo
11.
iScience ; 27(5): 109666, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38665206

RESUMEN

Plant cell walls constitute complex polysaccharidic/proteinaceous networks whose biosynthesis and dynamics implicate several cell compartments. The synthesis and remodeling of homogalacturonan pectins involve Golgi-localized methylation/acetylation and subsequent cell wall-localized demethylation/deacetylation. So far, TRICHOME BIREFRINGENCE-LIKE (TBL) family members have been described as Golgi-localized acetyltransferases targeting diverse hemicelluloses or pectins. Using seed mucilage secretory cells (MSCs) from Arabidopsis thaliana, we demonstrate the atypical localization of TBL38 restricted to a cell wall microdomain. A tbl38 mutant displays an intriguing homogalacturonan immunological phenotype in this cell wall microdomain and in an MSC surface-enriched abrasion powder. Mass spectrometry oligosaccharide profiling of this fraction reveals an increased homogalacturonan acetylation phenotype. Finally, TBL38 displays pectin acetylesterase activity in vitro. These results indicate that TBL38 is an atypical cell wall-localized TBL that displays a homogalacturonan acetylesterase activity rather than a Golgi-localized acetyltransferase activity as observed in previously studied TBLs. TBL38 function during seed development is discussed.

12.
Elife ; 122023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773033

RESUMEN

Deciphering the mechanism of secondary cell wall/SCW formation in plants is key to understanding their development and the molecular basis of biomass recalcitrance. Although transcriptional regulation is essential for SCW formation, little is known about the implication of post-transcriptional mechanisms in this process. Here we report that two bonafide RNA-binding proteins homologous to the animal translational regulator Musashi, MSIL2 and MSIL4, function redundantly to control SCW formation in Arabidopsis. MSIL2/4 interactomes are similar and enriched in proteins involved in mRNA binding and translational regulation. MSIL2/4 mutations alter SCW formation in the fibers, leading to a reduction in lignin deposition, and an increase of 4-O-glucuronoxylan methylation. In accordance, quantitative proteomics of stems reveal an overaccumulation of glucuronoxylan biosynthetic machinery, including GXM3, in the msil2/4 mutant stem. We showed that MSIL4 immunoprecipitates GXM mRNAs, suggesting a novel aspect of SCW regulation, linking post-transcriptional control to the regulation of SCW biosynthesis genes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Lignina , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Procesamiento Proteico-Postraduccional , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
13.
Planta ; 236(5): 1419-31, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22729825

RESUMEN

The compatible interaction between the model plant, Arabidopsis thaliana, and the GMI1000 strain of the phytopathogenic bacterium, Ralstonia solanacearum, was investigated in an in vitro pathosystem. We describe the progression of the bacteria in the root from penetration at the root surface to the xylem vessels and the cell type-specific, cell wall-associated modifications that accompanies bacterial colonization. Within 6 days post inoculation, R. solanacearum provoked a rapid plasmolysis of the epidermal, cortical, and endodermal cells, including those not directly in contact with the bacteria. Plasmolysis was accompanied by a global degradation of pectic homogalacturonanes as shown by the loss of JIM7 and JIM5 antibody signal in the cell wall of these cell types. As indicated by immunolabeling with Rsol-I antibodies that specifically recognize R. solanacearum, the bacteria progresses through the root in a highly directed, centripetal manner to the xylem poles, without extensive multiplication in the intercellular spaces along its path. Entry into the vascular cylinder was facilitated by cell collapse of the two pericycle cells located at the xylem poles. Once the bacteria reached the xylem vessels, they multiplied abundantly and moved from vessel to vessel by digesting the pit membrane between adjacent vessels. The degradation of the secondary walls of xylem vessels was not a prerequisite for vessel colonization as LM10 antibodies strongly labeled xylem cell walls, even at very late stages in disease development. Finally, the capacity of R. solanacearum to specifically degrade certain cell wall components and not others could be correlated with the arsenal of cell wall hydrolytic enzymes identified in the bacterial genome.


Asunto(s)
Arabidopsis/microbiología , Pared Celular/microbiología , Interacciones Huésped-Patógeno , Raíces de Plantas/microbiología , Ralstonia solanacearum/patogenicidad , Arabidopsis/metabolismo , Pared Celular/metabolismo , Inmunohistoquímica/métodos , Lipopolisacáridos/inmunología , Pectinas/metabolismo , Enfermedades de las Plantas/microbiología , Epidermis de la Planta/citología , Epidermis de la Planta/microbiología , Raíces de Plantas/citología , Ralstonia solanacearum/enzimología , Ralstonia solanacearum/inmunología , Plantones/microbiología , Xilema/citología , Xilema/microbiología
14.
Plant J ; 63(3): 469-83, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20497379

RESUMEN

By combining Zinnia elegans in vitro tracheary element genomics with reverse genetics in Arabidopsis, we have identified a new upstream component of secondary wall formation in xylary and interfascicular fibers. Walls are thin 1 (WAT1), an Arabidopsis thaliana homolog of Medicago truncatula NODULIN 21 (MtN21), encodes a plant-specific, predicted integral membrane protein, and is a member of the plant drug/metabolite exporter (P-DME) family (transporter classification number: TC 2.A.7.3). Although WAT1 is ubiquitously expressed throughout the plant, its expression is preferentially associated with vascular tissues, including developing xylem vessels and fibers. WAT1:GFP fusion protein analysis demonstrated that WAT1 is localized to the tonoplast. Analysis of wat1 mutants revealed two cell wall-related phenotypes in stems: a defect in cell elongation, resulting in a dwarfed habit and little to no secondary cell walls in fibers. Secondary walls of vessel elements were unaffected by the mutation. The secondary wall phenotype was supported by comparative transcriptomic and metabolomic analyses of wat1 and wild-type stems, as many transcripts and metabolites involved in secondary wall formation were reduced in abundance. Unexpectedly, these experiments also revealed a modification in tryptophan (Trp) and auxin metabolism that might contribute to the wat1 phenotype. Together, our data demonstrate an essential role for the WAT1 tonoplast protein in the control of secondary cell wall formation in fibers.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Pared Celular , Medicago truncatula/genética , Proteínas de Transporte de Membrana/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Genes de Plantas , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular
15.
Plant Biotechnol J ; 9(1): 50-63, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20492548

RESUMEN

Two C-repeat binding factor genes (EguCBF1a/b), isolated from E. gunnii and differentially cold-regulated, were constitutively overexpressed in a cold-sensitive Eucalyptus hybrid. In addition to the expected improvement on freezing tolerance, some resulting transgenic lines (EguCBF1a-OE and EguCBF1b-OE) exhibited a decrease in stomata density and an over-accumulation of anthocyanins also observed to a lesser extent in a cold-acclimated control plant. Given that the induction of five putative CBF target genes was observed in CBF-overexpressing lines as well as in the cold-acclimated control line, these phenotypes might be related to cold acclimation. In comparison with the control plant, the most altered transgenic line (EguCBF1a-OE A1 line), exhibited reduced growth and better water retention capacity. This modified phenotype includes reduced leaf area and thickness associated with a decrease in cell size, as well as a higher oil gland density and a wax deposition on the cuticle. Surprisingly, the EguCBF1b-OE B9 line, with a level of transgene expression equivalent to the A1 line, showed a less marked phenotype, suggesting a difference in transactivation efficiency between EguCBF1A and B factors. The features of these transgenic lines provide the first signs of adaptive mechanisms controlled by CBF transcription factors in an evergreen broad-leaved tree. These data also open new prospects towards genetic improvement on Eucalyptus for freezing tolerance.


Asunto(s)
Eucalyptus/fisiología , Estrés Fisiológico , Transactivadores/fisiología , Frío , Eucalyptus/genética , Eucalyptus/crecimiento & desarrollo , Congelación , Regulación de la Expresión Génica de las Plantas , Transactivadores/genética , Transgenes/fisiología , Regulación hacia Arriba
16.
J Exp Bot ; 62(11): 3837-48, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21493812

RESUMEN

Cinnamoyl-CoA reductase (CCR), which catalyses the first committed step of the lignin-specific branch of monolignol biosynthesis, has been extensively characterized in dicot species, but few data are available in monocots. By screening a Mu insertional mutant collection in maize, a mutant in the CCR1 gene was isolated named Zmccr1(-). In this mutant, CCR1 gene expression is reduced to 31% of the residual wild-type level. Zmccr1(-) exhibited enhanced digestibility without compromising plant growth and development. Lignin analysis revealed a slight decrease in lignin content and significant changes in lignin structure. p-Hydroxyphenyl units were strongly decreased and the syringyl/guaiacyl ratio was slightly increased. At the cellular level, alterations in lignin deposition were mainly observed in the walls of the sclerenchymatic fibre cells surrounding the vascular bundles. These cell walls showed little to no staining with phloroglucinol. These histochemical changes were accompanied by an increase in sclerenchyma surface area and an alteration in cell shape. In keeping with this cell type-specific phenotype, transcriptomics performed at an early stage of plant development revealed the down-regulation of genes specifically associated with fibre wall formation. To the present authors' knowledge, this is the first functional characterization of CCR1 in a grass species.


Asunto(s)
Aldehído Oxidorreductasas/genética , Regulación de la Expresión Génica de las Plantas , Lignina/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Zea mays/genética , Aldehído Oxidorreductasas/metabolismo , Pared Celular/química , Pared Celular/genética , Pared Celular/metabolismo , Expresión Génica , Inmunohistoquímica , Lignina/biosíntesis , Lignina/genética , Lignina/metabolismo , Filogenia , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
17.
BMC Plant Biol ; 10: 130, 2010 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-20584286

RESUMEN

BACKGROUND: Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the final steps in the biosynthesis of monolignols, the monomeric units of the phenolic lignin polymers which confer rigidity, imperviousness and resistance to biodegradation to cell walls. We have previously shown that the Eucalyptus gunnii CCR and CAD2 promoters direct similar expression patterns in vascular tissues suggesting that monolignol production is controlled, at least in part, by the coordinated transcriptional regulation of these two genes. Although consensus motifs for MYB transcription factors occur in most gene promoters of the whole phenylpropanoid pathway, functional evidence for their contribution to promoter activity has only been demonstrated for a few of them. Here, in the lignin-specific branch, we studied the functional role of MYB elements as well as other cis-elements identified in the regulatory regions of EgCAD2 and EgCCR promoters, in the transcriptional activity of these gene promoters. RESULTS: By using promoter deletion analysis and in vivo footprinting, we identified an 80 bp regulatory region in the Eucalyptus gunnii EgCAD2 promoter that contains two MYB elements, each arranged in a distinct module with newly identified cis-elements. A directed mutagenesis approach was used to introduce block mutations in all putative cis-elements of the EgCAD2 promoter and in those of the 50 bp regulatory region previously delineated in the EgCCR promoter. We showed that the conserved MYB elements in EgCAD2 and EgCCR promoters are crucial both for the formation of DNA-protein complexes in EMSA experiments and for the transcriptional activation of EgCAD2 and EgCCR promoters in vascular tissues in planta. In addition, a new regulatory cis-element that modulates the balance between two DNA-protein complexes in vitro was found to be important for EgCAD2 expression in the cambial zone. CONCLUSIONS: Our assignment of functional roles to the identified cis-elements clearly demonstrates the importance of MYB cis-elements in the transcriptional regulation of two genes of the lignin-specific pathway and support the hypothesis that MYB elements serve as a common means for the coordinated regulation of genes in the entire lignin biosynthetic pathway.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Aldehído Oxidorreductasas/genética , Eucalyptus/genética , Regulación de la Expresión Génica de las Plantas , Sitios de Unión , Huella de ADN , ADN de Plantas/genética , Eucalyptus/enzimología , Regulación Enzimológica de la Expresión Génica , Lignina/biosíntesis , Mutagénesis Sitio-Dirigida , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas , Unión Proteica , Nicotiana/enzimología , Nicotiana/genética , Activación Transcripcional , Xilema/metabolismo
18.
G3 (Bethesda) ; 10(2): 431-436, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31792008

RESUMEN

Pythium oligandrum is a soil born free living oomycete able to parasitize fungi and oomycetes prey, including important plant and animals pathogens. Pythium oligandrum can colonize endophytically the root tissues of diverse plants where it induces plant defenses. Here we report the first long-read genome sequencing of a P. oligandrum strain sequenced by PacBio technology. Sequencing of genomic DNA loaded onto six SMRT cells permitted the acquisition of 913,728 total reads resulting in 112X genome coverage. The assembly and polishing of the genome sequence yielded180 contigs (N50 = 1.3 Mb; L50 = 12). The size of the genome assembly is 41.9 Mb with a longest contig of 2.7 Mb and 15,007 predicted protein-coding genes among which 95.25% were supported by RNAseq data, thus constituting a new Pythium genome reference. This data will facilitate genomic comparisons of Pythium species that are commensal, beneficial or pathogenic on plant, or parasitic on fungi and oomycete to identify key genetic determinants underpinning their diverse lifestyles. In addition comparison with plant pathogenic or zoopathogenic species will illuminate genomic adaptations for pathogenesis toward widely diverse hosts.


Asunto(s)
Beta vulgaris/parasitología , Pythium/genética , Genoma , Proteoma , Pythium/metabolismo , RNA-Seq , Rizosfera
19.
New Phytol ; 183(4): 1014-1029, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19549133

RESUMEN

To better understand the genetic control of secondary xylem formation in trees we analysed genes expressed during Eucalyptus xylem development. Using eucalyptus xylem cDNA libraries, we identified EgROP1, a member of the plant ROP family of Rho-like GTPases. These signalling proteins are central regulators of many important processes in plants, but information on their role in xylogenesis is scarce. Quantitative real-time reverse-transcriptase polymerase chain reaction (qRT-PCR) confirmed that EgROP1 was preferentially expressed in the cambial zone and differentiating xylem in eucalyptus. Genetic mapping performed in a eucalyptus breeding population established a link between EgROP1 sequence polymorphisms and quantitative trait loci (QTLs) related to lignin profiles and fibre morphology. Overexpression of various forms of EgROP1 in Arabidopsis thaliana altered anisotropic cell growth in transgenic leaves, but most importantly affected vessel element and fibre growth in secondary xylem. Patches of fibre-like cells in the secondary xylem of transgenic plants showed changes in secondary cell wall thickness, lignin and xylan composition. These results suggest a role for EgROP1 in fibre cell morphology and secondary cell wall formation making it a good candidate gene for marker-based selection of eucalyptus trees.


Asunto(s)
Arabidopsis/genética , Eucalyptus/genética , GTP Fosfohidrolasas/genética , Genes de Plantas , Proteínas de Unión al GTP Monoméricas/genética , Xilema/genética , Arabidopsis/crecimiento & desarrollo , Mapeo Cromosómico , ADN Complementario , Eucalyptus/crecimiento & desarrollo , Biblioteca de Genes , Lignina , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Polimorfismo Genético , Sitios de Carácter Cuantitativo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Árboles/genética , Xilema/crecimiento & desarrollo
20.
Eukaryot Cell ; 7(11): 1980-93, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18806214

RESUMEN

Chitin is an essential component of fungal cell walls, where it forms a crystalline scaffold, and chitooligosaccharides derived from it are signaling molecules recognized by the hosts of pathogenic fungi. Oomycetes are cellulosic fungus-like microorganisms which most often lack chitin in their cell walls. Here we present the first study of the cell wall of the oomycete Aphanomyces euteiches, a major parasite of legume plants. Biochemical analyses demonstrated the presence of ca. 10% N-acetyl-D-glucosamine (GlcNAc) in the cell wall. Further characterization of the GlcNAc-containing material revealed that it corresponds to noncrystalline chitosaccharides associated with glucans, rather than to chitin per se. Two putative chitin synthase (CHS) genes were identified by data mining of an A. euteiches expressed sequence tag collection and Southern blot analysis, and full-length cDNA sequences of both genes were obtained. Phylogeny analysis indicated that oomycete CHS diversification occurred before the divergence of the major oomycete lineages. Remarkably, lectin labeling showed that the Aphanomyces euteiches chitosaccharides are exposed at the cell wall surface, and study of the effect of the CHS inhibitor nikkomycin Z demonstrated that they are involved in cell wall function. These data open new perspectives for the development of antioomycete drugs and further studies of the molecular mechanisms involved in the recognition of pathogenic oomycetes by the host plants.


Asunto(s)
Aphanomyces/metabolismo , Pared Celular/metabolismo , Quitosano/metabolismo , Fabaceae/microbiología , Enfermedades de las Plantas/microbiología , Secuencia de Aminoácidos , Aphanomyces/química , Aphanomyces/clasificación , Aphanomyces/genética , Pared Celular/genética , Quitina Sintasa/química , Quitina Sintasa/genética , Quitina Sintasa/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA