Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nature ; 585(7825): 390-396, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32939067

RESUMEN

The maritime expansion of Scandinavian populations during the Viking Age (about AD 750-1050) was a far-flung transformation in world history1,2. Here we sequenced the genomes of 442 humans from archaeological sites across Europe and Greenland (to a median depth of about 1×) to understand the global influence of this expansion. We find the Viking period involved gene flow into Scandinavia from the south and east. We observe genetic structure within Scandinavia, with diversity hotspots in the south and restricted gene flow within Scandinavia. We find evidence for a major influx of Danish ancestry into England; a Swedish influx into the Baltic; and Norwegian influx into Ireland, Iceland and Greenland. Additionally, we see substantial ancestry from elsewhere in Europe entering Scandinavia during the Viking Age. Our ancient DNA analysis also revealed that a Viking expedition included close family members. By comparing with modern populations, we find that pigmentation-associated loci have undergone strong population differentiation during the past millennium, and trace positively selected loci-including the lactase-persistence allele of LCT and alleles of ANKA that are associated with the immune response-in detail. We conclude that the Viking diaspora was characterized by substantial transregional engagement: distinct populations influenced the genomic makeup of different regions of Europe, and Scandinavia experienced increased contact with the rest of the continent.


Asunto(s)
Flujo Génico/genética , Genética de Población , Genoma Humano/genética , Genómica , Migración Humana/historia , Alelos , Conjuntos de Datos como Asunto , Inglaterra , Evolución Molecular , Groenlandia , Historia Medieval , Humanos , Inmunidad/genética , Irlanda , Lactasa/genética , Lactasa/metabolismo , Masculino , Países Escandinavos y Nórdicos , Selección Genética , Análisis Espacio-Temporal , Adulto Joven
2.
PLoS Genet ; 19(4): e1010360, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37104250

RESUMEN

There are longstanding questions about the origins and ancestry of the Picts of early medieval Scotland (ca. 300-900 CE), prompted in part by exotic medieval origin myths, their enigmatic symbols and inscriptions, and the meagre textual evidence. The Picts, first mentioned in the late 3rd century CE resisted the Romans and went on to form a powerful kingdom that ruled over a large territory in northern Britain. In the 9th and 10th centuries Gaelic language, culture and identity became dominant, transforming the Pictish realm into Alba, the precursor to the medieval kingdom of Scotland. To date, no comprehensive analysis of Pictish genomes has been published, and questions about their biological relationships to other cultural groups living in Britain remain unanswered. Here we present two high-quality Pictish genomes (2.4 and 16.5X coverage) from central and northern Scotland dated from the 5th-7th century which we impute and co-analyse with >8,300 previously published ancient and modern genomes. Using allele frequency and haplotype-based approaches, we can firmly place the genomes within the Iron Age gene pool in Britain and demonstrate regional biological affinity. We also demonstrate the presence of population structure within Pictish groups, with Orcadian Picts being genetically distinct from their mainland contemporaries. When investigating Identity-By-Descent (IBD) with present-day genomes, we observe broad affinities between the mainland Pictish genomes and the present-day people living in western Scotland, Wales, Northern Ireland and Northumbria, but less with the rest of England, the Orkney islands and eastern Scotland-where the political centres of Pictland were located. The pre-Viking Age Orcadian Picts evidence a high degree of IBD sharing across modern Scotland, Wales, Northern Ireland, and the Orkney islands, demonstrating substantial genetic continuity in Orkney for the last ~2,000 years. Analysis of mitochondrial DNA diversity at the Pictish cemetery of Lundin Links (n = 7) reveals absence of direct common female ancestors, with implications for broader social organisation. Overall, our study provides novel insights into the genetic affinities and population structure of the Picts and direct relationships between ancient and present-day groups of the UK.


Asunto(s)
ADN Mitocondrial , Humanos , Femenino , Haplotipos/genética , Escocia , ADN Mitocondrial/genética , Frecuencia de los Genes
3.
Nature ; 570(7760): 182-188, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31168093

RESUMEN

Northeastern Siberia has been inhabited by humans for more than 40,000 years but its deep population history remains poorly understood. Here we investigate the late Pleistocene population history of northeastern Siberia through analyses of 34 newly recovered ancient genomes that date to between 31,000 and 600 years ago. We document complex population dynamics during this period, including at least three major migration events: an initial peopling by a previously unknown Palaeolithic population of 'Ancient North Siberians' who are distantly related to early West Eurasian hunter-gatherers; the arrival of East Asian-related peoples, which gave rise to 'Ancient Palaeo-Siberians' who are closely related to contemporary communities from far-northeastern Siberia (such as the Koryaks), as well as Native Americans; and a Holocene migration of other East Asian-related peoples, who we name 'Neo-Siberians', and from whom many contemporary Siberians are descended. Each of these population expansions largely replaced the earlier inhabitants, and ultimately generated the mosaic genetic make-up of contemporary peoples who inhabit a vast area across northern Eurasia and the Americas.


Asunto(s)
Genoma Humano/genética , Migración Humana/historia , Asia/etnología , ADN Antiguo/análisis , Europa (Continente)/etnología , Pool de Genes , Haplotipos , Historia del Siglo XV , Historia Antigua , Historia Medieval , Humanos , Indígenas Norteamericanos , Masculino , Siberia/etnología
4.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35131896

RESUMEN

Orkney was a major cultural center during the Neolithic, 3800 to 2500 BC. Farming flourished, permanent stone settlements and chambered tombs were constructed, and long-range contacts were sustained. From ∼3200 BC, the number, density, and extravagance of settlements increased, and new ceremonial monuments and ceramic styles, possibly originating in Orkney, spread across Britain and Ireland. By ∼2800 BC, this phenomenon was waning, although Neolithic traditions persisted to at least 2500 BC. Unlike elsewhere in Britain, there is little material evidence to suggest a Beaker presence, suggesting that Orkney may have developed along an insular trajectory during the second millennium BC. We tested this by comparing new genomic evidence from 22 Bronze Age and 3 Iron Age burials in northwest Orkney with Neolithic burials from across the archipelago. We identified signals of inward migration on a scale unsuspected from the archaeological record: As elsewhere in Bronze Age Britain, much of the population displayed significant genome-wide ancestry deriving ultimately from the Pontic-Caspian Steppe. However, uniquely in northern and central Europe, most of the male lineages were inherited from the local Neolithic. This suggests that some male descendants of Neolithic Orkney may have remained distinct well into the Bronze Age, although there are signs that this had dwindled by the Iron Age. Furthermore, although the majority of mitochondrial DNA lineages evidently arrived afresh with the Bronze Age, we also find evidence for continuity in the female line of descent from Mesolithic Britain into the Bronze Age and even to the present day.


Asunto(s)
ADN Mitocondrial/genética , Migración Humana/historia , Herencia Paterna/genética , Arqueología , ADN Antiguo/análisis , Inglaterra , Europa (Continente) , Femenino , Fósiles , Pool de Genes , Genoma Humano/genética , Genómica , Haplotipos , Historia Antigua , Historia Medieval , Humanos , Irlanda , Masculino , Escocia
5.
Mol Biol Evol ; 39(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35084493

RESUMEN

Joint phylogenetic analysis of ancient DNA (aDNA) with modern phylogenies is hampered by low sequence coverage and post-mortem deamination, often resulting in overconservative or incorrect assignment. We provide a new efficient likelihood-based workflow, pathPhynder, that takes advantage of all the polymorphic sites in the target sequence. This effectively evaluates the number of ancestral and derived alleles present on each branch and reports the most likely placement of an ancient sample in the phylogeny and a haplogroup assignment, together with alternatives and supporting evidence. To illustrate the application of pathPhynder, we show improved Y chromosome assignments for published aDNA sequences, using a newly compiled Y variation data set (120,908 markers from 2,014 samples) that significantly enhances Y haplogroup assignment for low coverage samples. We apply the method to all published male aDNA samples from Africa, giving new insights into ancient migrations and the relationships between ancient and modern populations. The same software can be used to place samples with large amounts of missing data into other large non-recombining phylogenies such as the mitochondrial tree.


Asunto(s)
Cromosomas Humanos Y , ADN Antiguo , Filogenia , Secuencia de Bases , ADN Antiguo/análisis , ADN Mitocondrial/genética , Haplotipos , Humanos , Funciones de Verosimilitud , Masculino , Análisis de Secuencia de ADN/métodos
6.
Am J Hum Genet ; 104(5): 977-984, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31006515

RESUMEN

During the medieval period, hundreds of thousands of Europeans migrated to the Near East to take part in the Crusades, and many of them settled in the newly established Christian states along the Eastern Mediterranean coast. Here, we present a genetic snapshot of these events and their aftermath by sequencing the whole genomes of 13 individuals who lived in what is today known as Lebanon between the 3rd and 13th centuries CE. These include nine individuals from the "Crusaders' pit" in Sidon, a mass burial in South Lebanon identified from the archaeology as the grave of Crusaders killed during a battle in the 13th century CE. We show that all of the Crusaders' pit individuals were males; some were Western Europeans from diverse origins, some were locals (genetically indistinguishable from present-day Lebanese), and two individuals were a mixture of European and Near Eastern ancestries, providing direct evidence that the Crusaders admixed with the local population. However, these mixtures appear to have had limited genetic consequences since signals of admixture with Europeans are not significant in any Lebanese group today-in particular, Lebanese Christians are today genetically similar to local people who lived during the Roman period which preceded the Crusades by more than four centuries.


Asunto(s)
Etnicidad/genética , Etnicidad/historia , Flujo Génico , Genética de Población , Genoma Humano , Población Blanca/genética , Cromosomas Humanos Y/genética , ADN Mitocondrial/análisis , ADN Mitocondrial/genética , Femenino , Historia Antigua , Humanos , Líbano/etnología , Masculino
8.
PLoS Genet ; 14(1): e1007152, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29370172

RESUMEN

Previous studies of the genetic landscape of Ireland have suggested homogeneity, with population substructure undetectable using single-marker methods. Here we have harnessed the haplotype-based method fineSTRUCTURE in an Irish genome-wide SNP dataset, identifying 23 discrete genetic clusters which segregate with geographical provenance. Cluster diversity is pronounced in the west of Ireland but reduced in the east where older structure has been eroded by historical migrations. Accordingly, when populations from the neighbouring island of Britain are included, a west-east cline of Celtic-British ancestry is revealed along with a particularly striking correlation between haplotypes and geography across both islands. A strong relationship is revealed between subsets of Northern Irish and Scottish populations, where discordant genetic and geographic affinities reflect major migrations in recent centuries. Additionally, Irish genetic proximity of all Scottish samples likely reflects older strata of communication across the narrowest inter-island crossing. Using GLOBETROTTER we detected Irish admixture signals from Britain and Europe and estimated dates for events consistent with the historical migrations of the Norse-Vikings, the Anglo-Normans and the British Plantations. The influence of the former is greater than previously estimated from Y chromosome haplotypes. In all, we paint a new picture of the genetic landscape of Ireland, revealing structure which should be considered in the design of studies examining rare genetic variation and its association with traits.


Asunto(s)
Variación Genética , Migración Humana , Población Blanca/genética , Etnicidad/genética , Etnicidad/historia , Genética de Población , Estudio de Asociación del Genoma Completo , Genómica , Historia Antigua , Migración Humana/historia , Humanos , Irlanda , Islas/etnología , Dinámica Poblacional , Migrantes , Reino Unido , Población Blanca/historia
9.
Am J Hum Genet ; 101(2): 274-282, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28757201

RESUMEN

The Canaanites inhabited the Levant region during the Bronze Age and established a culture that became influential in the Near East and beyond. However, the Canaanites, unlike most other ancient Near Easterners of this period, left few surviving textual records and thus their origin and relationship to ancient and present-day populations remain unclear. In this study, we sequenced five whole genomes from ∼3,700-year-old individuals from the city of Sidon, a major Canaanite city-state on the Eastern Mediterranean coast. We also sequenced the genomes of 99 individuals from present-day Lebanon to catalog modern Levantine genetic diversity. We find that a Bronze Age Canaanite-related ancestry was widespread in the region, shared among urban populations inhabiting the coast (Sidon) and inland populations (Jordan) who likely lived in farming societies or were pastoral nomads. This Canaanite-related ancestry derived from mixture between local Neolithic populations and eastern migrants genetically related to Chalcolithic Iranians. We estimate, using linkage-disequilibrium decay patterns, that admixture occurred 6,600-3,550 years ago, coinciding with recorded massive population movements in Mesopotamia during the mid-Holocene. We show that present-day Lebanese derive most of their ancestry from a Canaanite-related population, which therefore implies substantial genetic continuity in the Levant since at least the Bronze Age. In addition, we find Eurasian ancestry in the Lebanese not present in Bronze Age or earlier Levantines. We estimate that this Eurasian ancestry arrived in the Levant around 3,750-2,170 years ago during a period of successive conquests by distant populations.


Asunto(s)
ADN Mitocondrial/genética , Etnicidad/genética , Genética de Población/métodos , Genoma Humano/genética , Variación Genética/genética , Historia Antigua , Humanos , Líbano , Desequilibrio de Ligamiento , Masculino , Población Blanca/genética
10.
PLoS Genet ; 13(7): e1006852, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28749934

RESUMEN

We analyse new genomic data (0.05-2.95x) from 14 ancient individuals from Portugal distributed from the Middle Neolithic (4200-3500 BC) to the Middle Bronze Age (1740-1430 BC) and impute genomewide diploid genotypes in these together with published ancient Eurasians. While discontinuity is evident in the transition to agriculture across the region, sensitive haplotype-based analyses suggest a significant degree of local hunter-gatherer contribution to later Iberian Neolithic populations. A more subtle genetic influx is also apparent in the Bronze Age, detectable from analyses including haplotype sharing with both ancient and modern genomes, D-statistics and Y-chromosome lineages. However, the limited nature of this introgression contrasts with the major Steppe migration turnovers within third Millennium northern Europe and echoes the survival of non-Indo-European language in Iberia. Changes in genomic estimates of individual height across Europe are also associated with these major cultural transitions, and ancestral components continue to correlate with modern differences in stature.


Asunto(s)
Genética de Población/métodos , Genómica/métodos , Haplotipos , Arqueología , Cromosomas Humanos Y/genética , Bases de Datos Genéticas , Europa (Continente) , Femenino , Variación Genética , Genoma Humano , Genotipo , Humanos , Masculino , Portugal , Análisis de Secuencia de ADN
11.
Proc Natl Acad Sci U S A ; 113(2): 368-73, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26712024

RESUMEN

The Neolithic and Bronze Age transitions were profound cultural shifts catalyzed in parts of Europe by migrations, first of early farmers from the Near East and then Bronze Age herders from the Pontic Steppe. However, a decades-long, unresolved controversy is whether population change or cultural adoption occurred at the Atlantic edge, within the British Isles. We address this issue by using the first whole genome data from prehistoric Irish individuals. A Neolithic woman (3343-3020 cal BC) from a megalithic burial (10.3× coverage) possessed a genome of predominantly Near Eastern origin. She had some hunter-gatherer ancestry but belonged to a population of large effective size, suggesting a substantial influx of early farmers to the island. Three Bronze Age individuals from Rathlin Island (2026-1534 cal BC), including one high coverage (10.5×) genome, showed substantial Steppe genetic heritage indicating that the European population upheavals of the third millennium manifested all of the way from southern Siberia to the western ocean. This turnover invites the possibility of accompanying introduction of Indo-European, perhaps early Celtic, language. Irish Bronze Age haplotypic similarity is strongest within modern Irish, Scottish, and Welsh populations, and several important genetic variants that today show maximal or very high frequencies in Ireland appear at this horizon. These include those coding for lactase persistence, blue eye color, Y chromosome R1b haplotypes, and the hemochromatosis C282Y allele; to our knowledge, the first detection of a known Mendelian disease variant in prehistory. These findings together suggest the establishment of central attributes of the Irish genome 4,000 y ago.


Asunto(s)
Genoma Humano , Migración Humana , Océano Atlántico , ADN/genética , ADN/aislamiento & purificación , Pool de Genes , Haplotipos/genética , Homocigoto , Humanos , Irlanda , Fenotipo , Análisis de Componente Principal , Análisis de Secuencia de ADN , Factores de Tiempo
12.
Proc Natl Acad Sci U S A ; 113(25): 6886-91, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27274049

RESUMEN

Farming and sedentism first appeared in southwestern Asia during the early Holocene and later spread to neighboring regions, including Europe, along multiple dispersal routes. Conspicuous uncertainties remain about the relative roles of migration, cultural diffusion, and admixture with local foragers in the early Neolithization of Europe. Here we present paleogenomic data for five Neolithic individuals from northern Greece and northwestern Turkey spanning the time and region of the earliest spread of farming into Europe. We use a novel approach to recalibrate raw reads and call genotypes from ancient DNA and observe striking genetic similarity both among Aegean early farmers and with those from across Europe. Our study demonstrates a direct genetic link between Mediterranean and Central European early farmers and those of Greece and Anatolia, extending the European Neolithic migratory chain all the way back to southwestern Asia.


Asunto(s)
Agricultura , Antropología , Europa (Continente) , Genética de Población , Humanos , Región Mediterránea , Análisis de Componente Principal
13.
Am J Hum Biol ; 30(2)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29193490

RESUMEN

OBJECTIVES: We examined internal lineages and haplotype diversity in Portuguese samples belonging to J-M304 to improve the spatial and temporal understanding of the introduction of this haplogroup in Iberia, using the available knowledge about the phylogeography of its main branches, J1-M267 and J2-M172. METHODS: A total of 110 males of Portuguese descent were analyzed for 17 Y-chromosome bi-allelic markers and seven Y-chromosome short tandem repeats (Y-STR) loci. RESULTS: Among J1-M267 individuals (n = 36), five different sub-haplogroups were identified, with the most common being J1a2b2-L147.1 (∼72%), which encompassed the majority of representatives of the J1a2b-P58 subclade. One sample belonged to the rare J1a1-M365.1 lineage and presented a core Y-STR haplotype consistent with the Iberian settlement during the fifth century by the Alans, a people of Iranian heritage. The analysis of J2-M172 Portuguese males (n = 74) enabled the detection of the two main subclades at very dissimilar frequencies, J2a-M410 (∼80%) and J2b-M12 (∼20%), among which the most common branches were J2a1(xJ2a1b,h)-L26 (22.9%), J2a1b(xJ2a1b1)-M67 (20.3%), J2a1h-L24 (27%), and J2b2-M241 (20.3%). CONCLUSIONS: While previous inferences based on modern haplogroup J Y-chromosomes implicated a main Neolithic dissemination, here we propose a later arrival of J lineages into Iberia using a combination of novel Portuguese Y-chromosomal data and recent evidence from ancient DNA. Our analysis suggests that a substantial tranche of J1-M267 lineages was likely carried into the Iberian Peninsula as a consequence of the trans-Mediterranean contacts during the first millennium BC, while most of the J2-M172 lineages may be associated with post-Neolithic population movements within Europe.


Asunto(s)
Cromosomas Humanos Y/genética , Haplotipos/genética , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Alelos , Marcadores Genéticos/genética , Humanos , Masculino , Filogeografía , Portugal
15.
Cell Genom ; 4(3): 100507, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38417441

RESUMEN

The harsh climate of Arabia has posed challenges in generating ancient DNA from the region, hindering the direct examination of ancient genomes for understanding the demographic processes that shaped Arabian populations. In this study, we report whole-genome sequence data obtained from four Tylos-period individuals from Bahrain. Their genetic ancestry can be modeled as a mixture of sources from ancient Anatolia, Levant, and Iran/Caucasus, with variation between individuals suggesting population heterogeneity in Bahrain before the onset of Islam. We identify the G6PD Mediterranean mutation associated with malaria resistance in three out of four ancient Bahraini samples and estimate that it rose in frequency in Eastern Arabia from 5 to 6 kya onward, around the time agriculture appeared in the region. Our study characterizes the genetic composition of ancient Arabians, shedding light on the population history of Bahrain and demonstrating the feasibility of studies of ancient DNA in the region.


Asunto(s)
Árabes , ADN Antiguo , Genética de Población , Genoma Humano , Humanos , Árabes/genética , Bahrein
16.
Genes (Basel) ; 13(2)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35205264

RESUMEN

Uniparental genetic systems are unique sex indicators and complement the study of autosomal diversity by providing landmarks of human migrations that repeatedly shaped the structure of extant populations. Our knowledge of the variation of the male-specific region of the Y chromosome in Native Americans is still rather scarce and scattered, but by merging sequence information from modern and ancient individuals, we here provide a comprehensive and updated phylogeny of the distinctive Native American branches of haplogroups C and Q. Our analyses confirm C-MPB373, C-P39, Q-Z780, Q-M848, and Q-Y4276 as the main founding haplogroups and identify traces of unsuccessful (pre-Q-F1096) or extinct (C-L1373*, Q-YP4010*) Y-chromosome lineages, indicating that haplogroup diversity of the founder populations that first entered the Americas was greater than that observed in the Indigenous component of modern populations. In addition, through a diachronic and phylogeographic dissection of newly identified Q-M848 branches, we provide the first Y-chromosome insights into the early peopling of the South American hinterland (Q-BY104773 and Q-BY15730) and on overlying inland migrations (Q-BY139813).


Asunto(s)
Cromosomas Humanos Y , Migración Humana , Américas , Cromosomas Humanos Y/genética , Haplotipos , Humanos , Masculino , Filogenia
17.
Sci Rep ; 11(1): 18121, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518562

RESUMEN

Historical records document medieval immigration from North Africa to Iberia to create Islamic al-Andalus. Here, we present a low-coverage genome of an eleventh century CE man buried in an Islamic necropolis in Segorbe, near Valencia, Spain. Uniparental lineages indicate North African ancestry, but at the autosomal level he displays a mosaic of North African and European-like ancestries, distinct from any present-day population. Altogether, the genome-wide evidence, stable isotope results and the age of the burial indicate that his ancestry was ultimately a result of admixture between recently arrived Amazigh people (Berbers) and the population inhabiting the Peninsula prior to the Islamic conquest. We detect differences between our sample and a previously published group of contemporary individuals from Valencia, exemplifying how detailed, small-scale aDNA studies can illuminate fine-grained regional and temporal differences. His genome demonstrates how ancient DNA studies can capture portraits of past genetic variation that have been erased by later demographic shifts-in this case, most likely the seventeenth century CE expulsion of formerly Islamic communities as tolerance dissipated following the Reconquista by the Catholic kingdoms of the north.


Asunto(s)
Dieta , Genética de Población , Migración Humana , África del Norte , Antropología , Arqueología , Antecedentes Genéticos , Genoma Humano , Historia Medieval , Humanos , Filogenia , Filogeografía , España
18.
Genome Biol ; 21(1): 250, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32943086

RESUMEN

BACKGROUND: During the last decade, the analysis of ancient DNA (aDNA) sequence has become a powerful tool for the study of past human populations. However, the degraded nature of aDNA means that aDNA molecules are short and frequently mutated by post-mortem chemical modifications. These features decrease read mapping accuracy and increase reference bias, in which reads containing non-reference alleles are less likely to be mapped than those containing reference alleles. Alternative approaches have been developed to replace the linear reference with a variation graph which includes known alternative variants at each genetic locus. Here, we evaluate the use of variation graph software vg to avoid reference bias for aDNA and compare with existing methods. RESULTS: We use vg to align simulated and real aDNA samples to a variation graph containing 1000 Genome Project variants and compare with the same data aligned with bwa to the human linear reference genome. Using vg leads to a balanced allelic representation at polymorphic sites, effectively removing reference bias, and more sensitive variant detection in comparison with bwa, especially for insertions and deletions (indels). Alternative approaches that use relaxed bwa parameter settings or filter bwa alignments can also reduce bias but can have lower sensitivity than vg, particularly for indels. CONCLUSIONS: Our findings demonstrate that aligning aDNA sequences to variation graphs effectively mitigates the impact of reference bias when analyzing aDNA, while retaining mapping sensitivity and allowing detection of variation, in particular indel variation, that was previously missed.


Asunto(s)
ADN Antiguo/análisis , Genoma Humano , Mutación INDEL , Análisis de Secuencia de ADN/métodos , Humanos , Estándares de Referencia , Análisis de Secuencia de ADN/normas
19.
Nat Ecol Evol ; 3(5): 765-771, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30988490

RESUMEN

The roles of migration, admixture and acculturation in the European transition to farming have been debated for over 100 years. Genome-wide ancient DNA studies indicate predominantly Aegean ancestry for continental Neolithic farmers, but also variable admixture with local Mesolithic hunter-gatherers. Neolithic cultures first appear in Britain circa 4000 BC, a millennium after they appeared in adjacent areas of continental Europe. The pattern and process of this delayed British Neolithic transition remain unclear. We assembled genome-wide data from 6 Mesolithic and 67 Neolithic individuals found in Britain, dating 8500-2500 BC. Our analyses reveal persistent genetic affinities between Mesolithic British and Western European hunter-gatherers. We find overwhelming support for agriculture being introduced to Britain by incoming continental farmers, with small, geographically structured levels of hunter-gatherer ancestry. Unlike other European Neolithic populations, we detect no resurgence of hunter-gatherer ancestry at any time during the Neolithic in Britain. Genetic affinities with Iberian Neolithic individuals indicate that British Neolithic people were mostly descended from Aegean farmers who followed the Mediterranean route of dispersal. We also infer considerable variation in pigmentation levels in Europe by circa 6000 BC.


Asunto(s)
ADN Antiguo , Genoma , Europa (Continente) , Humanos , Dinámica Poblacional , Reino Unido
20.
Nat Ecol Evol ; 3(6): 986-987, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31068681

RESUMEN

In the version of this Article originally published, there were errors in the colour ordering of the legend in Fig. 5b, and in the positions of the target and surrogate populations in Fig. 5c. This has now been corrected. The conclusions of the study are in no way affected. The errors have been corrected in the HTML and PDF versions of the article.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA