Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
PLoS Pathog ; 18(7): e1010666, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35816515

RESUMEN

The apical complex of apicomplexan parasites is essential for host cell invasion and intracellular survival and as the site of regulated exocytosis from specialised secretory organelles called rhoptries and micronemes. Despite its importance, there are few data on the three-dimensional organisation and quantification of these organelles within the apical complex or how they are trafficked to this specialised region of plasma membrane for exocytosis. In coccidian apicomplexans there is an additional tubulin-containing hollow barrel structure, the conoid, which provides a structural gateway for this specialised apical secretion. Using a combination of cellular electron tomography and serial block face-scanning electron microscopy (SBF-SEM) we have reconstructed the entire apical end of Eimeria tenella sporozoites; we report a detailed dissection of the three- dimensional organisation of the conoid and show there is high curvature of the tubulin-containing fibres that might be linked to the unusual comma-shaped arrangement of protofilaments. We quantified the number and location of rhoptries and micronemes within cells and show a highly organised gateway for trafficking and docking of rhoptries, micronemes and microtubule-associated vesicles within the conoid around a set of intra-conoidal microtubules. Finally, we provide ultrastructural evidence for fusion of rhoptries directly through the parasite plasma membrane early in infection and the presence of a pore in the parasitophorous vacuole membrane, providing a structural explanation for how rhoptry proteins may be trafficked between the parasite and the host cytoplasm.


Asunto(s)
Eimeria tenella , Parásitos , Animales , Eimeria tenella/metabolismo , Eimeria tenella/ultraestructura , Tomografía con Microscopio Electrónico , Orgánulos/metabolismo , Parásitos/metabolismo , Proteínas Protozoarias/metabolismo , Tubulina (Proteína)/metabolismo
2.
Avian Pathol ; : 1-5, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33823695

RESUMEN

Coccidiosis, caused by Eimeria species parasites, remains a major threat to poultry production, undermining economic performance and compromising welfare. The recent characterization of three new Eimeria species that infect chickens has highlighted that many gaps remain in our knowledge of the biology and epidemiology of these parasites. Concerns about the use of anticoccidial drugs, widespread parasite drug resistance, the need for vaccines that can be used across broiler as well as layer and breeder sectors, and consumer preferences for "clean" farming, all point to the need for novel control strategies. New research tools including vaccine delivery vectors, high throughput sequencing, parasite transgenesis and sensitive molecular assays that can accurately assess parasite development in vitro and in vivo are all proving helpful in the ongoing quest for improved cost-effective, scalable strategies for future control of coccidiosis.

3.
Parasitology ; 147(3): 263-278, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31727204

RESUMEN

Apicomplexans, including species of Eimeria, pose a real threat to the health and wellbeing of animals and humans. Eimeria parasites do not infect humans but cause an important economic impact on livestock, in particular on the poultry industry. Despite its high prevalence and financial costs, little is known about the cell biology of these 'cosmopolitan' parasites found all over the world. In this review, we discuss different aspects of the life cycle and stages of Eimeria species, focusing on cellular structures and organelles typical of the coccidian family as well as genus-specific features, complementing some 'unknowns' with what is described in the closely related coccidian Toxoplasma gondii.


Asunto(s)
Pollos , Coccidiosis/veterinaria , Eimeria/fisiología , Estadios del Ciclo de Vida , Enfermedades de las Aves de Corral/parasitología , Animales , Coccidiosis/parasitología , Eimeria/crecimiento & desarrollo , Orgánulos/fisiología
4.
Parasitology ; 143(1): 97-113, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26521890

RESUMEN

Virulence factors from the ROP2-family have been extensively studied in Toxoplasma gondii, but in the closely related Neospora caninum only NcROP2Fam-1 has been partially characterized to date. NcROP40 is a member of this family and was found to be more abundantly expressed in virulent isolates. Both NcROP2Fam-1 and NcROP40 were evaluated as vaccine candidates and exerted a synergistic effect in terms of protection against vertical transmission in mouse models, which suggests that they may be relevant for parasite pathogenicity. NcROP40 is localized in the rhoptry bulbs of tachyzoites and bradyzoites, but in contrast to NcROP2Fam-1, the protein does not associate with the parasitophorous vacuole membrane due to the lack of arginine-rich amphipathic helix in its sequence. Similarly to NcROP2Fam-1, NcROP40 mRNA levels are highly increased during tachyzoite egress and invasion. However, NcROP40 up-regulation does not appear to be linked to the mechanisms triggering egress. In contrast to NcROP2Fam-1, phosphorylation of NcROP40 was not observed during egress. Besides, NcROP40 secretion into the host cell was not successfully detected by immunofluorescence techniques. These findings indicate that NcROP40 and NcROP2Fam-1 carry out different functions, and highlight the need to elucidate the role of NcROP40 within the lytic cycle and to explain its relative abundance in tachyzoites.


Asunto(s)
Regulación de la Expresión Génica , Proteínas de la Membrana/genética , Neospora/genética , Proteínas Protozoarias/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de la Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Neospora/fisiología , Neospora/ultraestructura , Fosforilación , Transporte de Proteínas , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes , Alineación de Secuencia , Análisis de Secuencia de ADN , Regulación hacia Arriba
5.
Open Biol ; 14(6): 230451, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38862023

RESUMEN

Plasmodium species encode a unique set of six modular proteins named LCCL lectin domain adhesive-like proteins (LAPs) that operate as a complex and that are essential for malaria parasite transmission from mosquito to vertebrate. LAPs possess complex architectures obtained through unique assemblies of conserved domains associated with lipid, protein and carbohydrate interactions, including the name-defining LCCL domain. Here, we assessed the prevalence of Plasmodium LAP orthologues across eukaryotic life. Our findings show orthologous conservation in all apicomplexans, with lineage-specific repertoires acquired through differential lap gene loss and duplication. Besides Apicomplexa, LAPs are found in their closest relatives: the photosynthetic chromerids, which encode the broadest repertoire including a novel membrane-bound LCCL protein. LAPs are notably absent from other alveolate lineages (dinoflagellates, perkinsids and ciliates), but are encoded by predatory colponemids, a sister group to the alveolates. These results reveal that the LAPs are much older than previously thought and pre-date not only the Apicomplexa but the Alveolata altogether.


Asunto(s)
Evolución Molecular , Filogenia , Plasmodium , Proteínas Protozoarias , Proteínas Protozoarias/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Plasmodium/genética , Plasmodium/metabolismo , Alveolados/genética , Alveolados/metabolismo , Dominios Proteicos , Apicomplexa/genética , Apicomplexa/metabolismo , Lectinas/genética , Lectinas/metabolismo , Lectinas/química
6.
Parasitology ; 140(8): 999-1008, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23594379

RESUMEN

Bovine besnoitiosis is a chronic and debilitating disease, caused by the apicomplexan parasite Besnoitia besnoiti. Infection of cattle by B. besnoiti is governed by the tachyzoite stage, which is related to acute infection, and the bradyzoite stage gathered into macroscopic cysts located in subcutaneous tissue in the skin, mucosal membranes and sclera conjunctiva and related to persistence and chronic infection. However, the entire life cycle of this parasite and the molecular mechanisms underlying tachyzoite-to-bradyzoite conversion remain unknown. In this context, a different antigenic pattern has been observed between tachyzoite and bradyzoite extracts. Thus, to identify stage-specific proteins, a difference gel electrophoresis (DIGE) approach was used on tachyzoite and bradyzoite extracts followed by mass spectrometry (MS) analysis. A total of 130 and 132 spots were differentially expressed in bradyzoites and tachyzoites, respectively (average ratio ± 1.5, P<0.05 in t-test). Furthermore, 25 differentially expressed spots were selected and analysed by MALDI-TOF/MS. As a result, 5 up-regulated bradyzoite proteins (GAPDH, ENO1, LDH, SOD and RNA polymerase) and 5 up-regulated tachyzoite proteins (ENO2; LDH; ATP synthase; HSP70 and PDI) were identified. The present results set the basis for the identification of new proteins as drug targets. Moreover, the role of these proteins in tachyzoite-to-bradyzoite conversion and the role of the host cell environment should be a subject of further research.


Asunto(s)
Coccidiosis/veterinaria , Estadios del Ciclo de Vida , Proteómica , Proteínas Protozoarias/metabolismo , Sarcocystidae/crecimiento & desarrollo , Animales , Bovinos , Coccidiosis/parasitología , Regulación de la Expresión Génica , Proteínas Protozoarias/análisis , Sarcocystidae/química , Sarcocystidae/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/veterinaria , Electroforesis Bidimensional Diferencial en Gel/veterinaria
7.
Life (Basel) ; 13(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37374079

RESUMEN

Poultry is the first source of animal protein for human consumption. In a changing world, this sector is facing new challenges, such as a projected increase in demand, higher standards of food quality and safety, and reduction of environmental impact. Chicken coccidiosis is a highly widespread enteric disease caused by Eimeria spp. which causes significant economic losses to the poultry industry worldwide; however, the impact on family poultry holders or backyard production-which plays a key role in food security in small communities and involves mainly rural women-has been little explored. Coccidiosis disease is controlled by good husbandry measures, chemoprophylaxis, and/or live vaccination. The first live vaccines against chicken coccidiosis were developed in the 1950s; however, after more than seven decades, none has reached the market. Current limitations on their use have led to research in next-generation vaccines based on recombinant or live-vectored vaccines. Next-generation vaccines are required to control this complex parasitic disease, and for this purpose, protective antigens need to be identified. In this review, we have scrutinised surface proteins identified so far in Eimeria spp. affecting chickens. Most of these surface proteins are anchored to the parasite membrane by a glycosylphosphatidylinositol (GPI) molecule. The biosynthesis of GPIs, as well as the role of currently identified surface proteins and interest as vaccine candidates has been summarised. The potential role of surface proteins in drug resistance and immune escape and how these could limit the efficacy of control strategies was also discussed.

8.
Animals (Basel) ; 14(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38200808

RESUMEN

Coccidiosis poses a significant challenge in poultry production and is typically managed with ionophores and chemical anticoccidials. However, the emergence of drug resistance and limitations on their use have encouraged the exploration of alternative solutions, including botanical compounds and improvements in in vitro screening methods. Prior research focused only on the impact of these alternatives on Eimeria invasion, with intracellular development in cell cultures receiving limited attention. This study assessed the impact of thyme (Thymus vulgaris), oregano (Origanum vulgare), and garlic (Allium sativum) essential oils, as well as their bioactive compounds, on the initial phase of schizogony in Madin-Darby bovine kidney cells, comparing their effectiveness to two commercially used anticoccidial drugs. Using image analysis and quantitative PCR, the study confirmed the efficacy of commercial anticoccidials in reducing invasion and schizont formation, and it found that essential oils were equally effective. Notably, thymol and carvacrol exhibited mild inhibition of intracellular replication of the parasite but significantly reduced schizont numbers, implying a potential reduction in pathogenicity. In conclusion, this research highlights the promise of essential oils and their bioactive components as viable alternatives to traditional anticoccidial drugs for mitigating coccidiosis in poultry, particularly by disrupting the intracellular development of the parasites.

9.
Front Cell Infect Microbiol ; 13: 1082622, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033474

RESUMEN

Introduction: Refractile bodies (RB) are large membrane-less organelles (MLO) of unknown function found as a prominent mismatched pair within the sporozoite stages of all species of Eimeria, parasitic coccidian protozoa. Methods: High resolution imaging methods including time-lapse live confocal microscopy and serial block face-scanning electron microscopy (SBF-SEM) were used to investigate the morphology of RB and other intracellular organelles before and after sporozoite invasion of host cells. Results: Live cell imaging of MDBK cells infected with E. tenella sporozoites confirmed previous reports that RB reduce from two to one post-infection and showed that reduction in RB number occurs via merger of the anterior RB with the posterior RB, a process that lasts 20-40 seconds and takes place between 2- and 5-hours post-infection. Ultrastructural studies using SBF-SEM on whole individual sporozoites, both pre- and post-host cell invasion, confirmed the live cell imaging observations and showed also that changes to the overall sporozoite cell shape accompanied RB merger. Furthermore, the single RB post-merger was found to be larger in volume than the two RB pre-merger. Actin inhibitors were used to investigate a potential role for actin in RB merger, Cytochalasin D significantly inhibited both RB merger and the accompanying changes in sporozoite cell shape. Discussion: MLOs in eukaryotic organisms are characterised by their lack of a membrane and ability to undergo liquid-liquid phase separation (LLPS) and fusion, usually in an actin-mediated fashion. Based on the changes in sporozoite cell shape observed at the time of RB merger together with a potential role for actin in this process, we propose that RB are classed as an MLO and recognised as one of the largest MLOs so far characterised.


Asunto(s)
Pollos , Coccidiosis , Eimeria tenella , Orgánulos , Enfermedades de las Aves de Corral , Esporozoítos , Animales , Actinas/metabolismo , Pollos/metabolismo , Pollos/parasitología , Eimeria tenella/metabolismo , Eimeria tenella/fisiología , Orgánulos/metabolismo , Orgánulos/fisiología , Esporozoítos/metabolismo , Esporozoítos/fisiología , Coccidiosis/metabolismo , Coccidiosis/parasitología , Coccidiosis/fisiopatología , Enfermedades de las Aves de Corral/metabolismo , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/fisiopatología
10.
Front Immunol ; 13: 809711, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185896

RESUMEN

Cheap, easy-to-produce oral vaccines are needed for control of coccidiosis in chickens to reduce the impact of this disease on welfare and economic performance. Saccharomyces cerevisiae yeast expressing three Eimeria tenella antigens were developed and delivered as heat-killed, freeze-dried whole yeast oral vaccines to chickens in four separate studies. After vaccination, E. tenella replication was reduced following low dose challenge (250 oocysts) in Hy-Line Brown layer chickens (p<0.01). Similarly, caecal lesion score was reduced in Hy-Line Brown layer chickens vaccinated using a mixture of S. cerevisiae expressing EtAMA1, EtIMP1 and EtMIC3 following pathogenic-level challenge (4,000 E. tenella oocysts; p<0.01). Mean body weight gain post-challenge with 15,000 E. tenella oocysts was significantly increased in vaccinated Cobb500 broiler chickens compared to mock-vaccinated controls (p<0.01). Thus, inactivated recombinant yeast vaccines offer cost-effective and scalable opportunities for control of coccidiosis, with relevance to broiler production and chickens reared in low-and middle-income countries (LMICs).


Asunto(s)
Coccidiosis/veterinaria , Eimeria tenella/inmunología , Enfermedades de las Aves de Corral/parasitología , Proteínas Protozoarias/inmunología , Vacunas Antiprotozoos/inmunología , Animales , Pollos/inmunología , Pollos/parasitología , Coccidiosis/prevención & control , Eimeria tenella/crecimiento & desarrollo , Femenino , Masculino , Enfermedades de las Aves de Corral/prevención & control , Proteínas Protozoarias/genética , Vacunas Antiprotozoos/genética , Saccharomyces cerevisiae/inmunología , Vacunación/métodos , Vacunación/veterinaria , Vacunas de Subunidad/inmunología
11.
Life (Basel) ; 12(11)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36362938

RESUMEN

Origanum vulgare subsp. hirtum, Thymus vulgaris, and Salvia fructicosa are aromatic plants commonly found in Mediterranean countries and are traditionally used in Greece as a remedy for humans, since they are well known as potent antibacterial, antioxidant, and anti-inflammatory agents. Essential oils (EOs) derived from plants cultivated in the mountainous region of Epirus, Greece, were investigated for their inhibitory activity against key microorganisms with relevance to avian health, while also assessing their antioxidant and anti-inflammatory activity. The total phenolic content (TPC) of the EOs was estimated according to the Folin−Ciocalteu method, while the antioxidant capacity was tested through the EOs' ability to scavenge free radicals by means of the DPPH, ABTS, and FRAP assays. Antibacterial and anti-inflammatory effects were examined by the agar disc diffusion method and the lipoxygenase (LOX) inhibition test, respectively. Furthermore, the EOs' ability to inhibit the invasion of sporozoites of Eimeria tenella (Wisconsin strain) along with any toxic effects were assayed in Madin−Darby bovine kidney (MDBK) cells. The antioxidant activity of the EOs was observed in descending order: oregano > thyme > sage. The antimicrobial effects of thyme and oregano were equivalent and higher than that of sage, while the anti-inflammatory effect of thyme was higher compared to both sage and oregano. The intracellular invasion of sporozoites was evaluated by the detection of E. tenella DNA by qPCR from cell monolayers harvested at 2 and 24 h post-infection. Parasite invasion was inhibited by the addition of oregano essential oil at the concentration of 100 µg/mL by 83% or 93% after 2 or 24 h, respectively, and was higher compared to the addition of thyme and sage, which had similar effects, but at a less intensive level. The cytotoxic assessment of all three essential oils revealed that they had no effect on MDBK cells compared to dimethyl sulfoxide (DMSO), used as the control substance. The supplementation of oregano, thyme, and sage essential oils had a potent antioxidant, anti-inflammatory, antimicrobial, and anticoccidial in vitro effect that is comparable to synthetic substances or approved drugs, justifying the need for further evaluation by in vivo studies in broilers reared in the absence of antimicrobial and anticoccidial drugs or synthetic antioxidant and/or anti-inflammatory compounds.

12.
Front Vet Sci ; 8: 800361, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35071390

RESUMEN

Parasites of the phylum Apicomplexa are the causative agents of important diseases such as malaria, toxoplasmosis or cryptosporidiosis in humans, and babesiosis and coccidiosis in animals. Whereas the first human recombinant vaccine against malaria has been approved and recently recommended for wide administration by the WHO, most other zoonotic parasitic diseases lack of appropriate immunoprophylaxis. Sequencing technologies, bioinformatics, and statistics, have opened the "omics" era into apicomplexan parasites, which has led to the development of systems biology, a recent field that can significantly contribute to more rational design for new vaccines. The discovery of novel antigens by classical approaches is slow and limited to very few antigens identified and analyzed by each study. High throughput approaches based on the expansion of the "omics", mainly genomics and transcriptomics have facilitated the functional annotation of the genome for many of these parasites, improving significantly the understanding of the parasite biology, interactions with the host, as well as virulence and host immune response. Developments in genetic manipulation in apicomplexan parasites have also contributed to the discovery of new potential vaccine targets. The present minireview does a comprehensive summary of advances in "omics", CRISPR/Cas9 technologies, and in systems biology approaches applied to apicomplexan parasites of economic and zoonotic importance, highlighting their potential of the holistic view in vaccine development.

13.
Life (Basel) ; 11(9)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34575057

RESUMEN

The Coccidia are a subclass of the Apicomplexa and include several genera of protozoan parasites that cause important diseases in humans and animals, with Toxoplasma gondii becoming the 'model organism' for research into the coccidian molecular and cellular processes. The amenability to the cultivation of T. gondii tachyzoites and the wide availability of molecular tools for this parasite have revealed many mechanisms related to their cellular trafficking and roles of parasite secretory organelles, which are critical in parasite-host interaction. Nevertheless, the extrapolation of the T. gondii mechanisms described in tachyzoites to other coccidian parasites should be done carefully. In this review, we considered published data from Eimeria parasites, a coccidian genus comprising thousands of species whose infections have important consequences in livestock and poultry. These studies suggest that the Coccidia possess both shared and diversified mechanisms of protein trafficking and secretion potentially linked to their lifecycles. Whereas trafficking and secretion appear to be well conversed prior to and during host-cell invasion, important differences emerge once endogenous development commences. Therefore, further studies to validate the mechanisms described in T. gondii tachyzoites should be performed across a broader range of coccidians (including T. gondii sporozoites). In addition, further genus-specific research regarding important disease-causing Coccidia is needed to unveil the individual molecular mechanisms of pathogenesis related to their specific lifecycles and hosts.

14.
CABI Agric Biosci ; 2(1): 37, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604790

RESUMEN

Coccidiosis is a potentially severe enteritis caused by species of obligate intracellular parasites of the genus Eimeria. These parasites cause significant economic losses to the poultry industry, predominantly due to compromised efficiency of production as well as the cost of control. These losses were recently estimated to cost chicken producers approximately £10.4 billion worldwide annually. High levels of Eimeria infection cause clinical coccidiosis which is a significant threat to poultry welfare, and a pre-disposing contributory factor for necrotic enteritis. Control of Eimeria parasites and coccidiosis is therefore an important endeavour; multiple approaches have been developed and these are often deployed together. This review summarises current trends in strategies for control of Eimeria, focusing on three main areas: good husbandry, chemoprophylaxis and vaccination. There is currently no "perfect solution" and there are advantages and limitations to all existing methods. Therefore, the aim of this review is to present current control strategies and suggest how these may develop in the future.

15.
Front Vet Sci ; 8: 640041, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33693044

RESUMEN

Eimeria species parasites infect the gastrointestinal tract of chickens, causing disease and impacting on production. The poultry industry relies on anticoccidial drugs and live vaccines to control Eimeria and there is a need for novel, scalable alternatives. Understanding the outcomes of experimental infection in commercial chickens is valuable for assessment of novel interventions. We examined the impact of different infectious doses of Eimeria tenella (one low dose, three high doses) in three commercial layer chicken lines, evaluating lesion score, parasite replication and cytokine response in the caeca. Groups of eight to ten chickens were housed together and infected with 250, 4,000, 8,000 or 12,000 sporulated oocysts at 21 days of age. Five days post-infection caeca were assessed for lesions and to quantify parasite replication by qPCR and cytokine transcription by RT-qPCR. Comparison of the three high doses revealed no significant variation between them in observed lesions or parasite replication with all being significantly higher than the low dose infection. Transcription of IFN-γ and IL-10 increased in all infected chickens relative to unchallenged controls, with no significant differences associated with dose magnitude (p > 0.05). No significant differences were detected in lesion score, parasite replication or caecal cytokine expression between the three lines of chickens. We therefore propose 4,000 E. tenella oocysts is a sufficient dose to reliably induce lesions in commercial layer chickens, and that estimates of parasite replication can be derived by qPCR from these same birds. However, more accurate quantification of Eimeria replication requires a separate low dose challenge group. Optimisation of challenge dose in an appropriate chicken line is essential to maximize the value of in vivo efficacy studies. For coccidiosis, this approach can reduce the numbers of chickens required for statistically significant studies and reduce experimental severity.

16.
Proteomics ; 10(9): 1740-50, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20162558

RESUMEN

Identification of differentially expressed proteins during Neospora caninum tachyzoite-bradyzoite conversion processes may lead to a better knowledge of the pathogenic mechanisms developed by this important parasite of cattle. In the present work, a differential expression proteomic study of tachyzoite and bradyzoite stages was accomplished for the first time by applying DIGE technology coupled with MS analysis. Up to 72 differentially expressed spots were visualized (1.5-fold in relative abundance, p<0.05, t-test). A total of 53 spots were more abundant in bradyzoites and 19 spots in tachyzoites. MS analysis identified 26 proteins; 20 of them overexpressed in the bradyzoite stage and 6 in the tachyzoite stage. Among the novel proteins, enolase and glyceraldehyde-3-phosphate dehydrogenase (involved in glycolysis), HSP70 and HSP90 (related to stress response) as well as the dense granule protein GRA9, which showed higher abundance in the bradyzoite stage, might be highlighted. On the other hand, isocitrate dehydrogenase 2, involved in the Krebs cycle, was found to be more abundant in tachyzoites extract. Biological functions from most novel proteins were correlated with previously reported processes during the differentiation process in Toxoplasma gondii. Thus, DIGE technology arises as a suitable tool to study mechanisms involved in the N. caninum tachyzoite to bradyzoite conversion.


Asunto(s)
Neospora/química , Neospora/crecimiento & desarrollo , Proteínas Protozoarias/análisis , Secuencia de Aminoácidos , Electroforesis en Gel Bidimensional , Espectrometría de Masas , Datos de Secuencia Molecular , Proteínas Protozoarias/química
17.
Parasit Vectors ; 13(1): 343, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32650837

RESUMEN

BACKGROUND: Poultry coccidiosis is a parasitic enteric disease with a highly negative impact on chicken production. In-feed chemoprophylaxis remains the primary method of control, but the increasing ineffectiveness of anticoccidial drugs, and potential future restrictions on their use has encouraged the use of commercial live vaccines. Availability of such formulations is constrained by their production, which relies on the use of live chickens. Several experimental approaches have been taken to explore ways to reduce the complexity and cost of current anticoccidial vaccines including the use of live vectors expressing relevant Eimeria proteins. We and others have shown that vaccination with transgenic Eimeria tenella parasites expressing Eimeria maxima Apical Membrane Antigen-1 or Immune Mapped Protein-1 (EmAMA1 and EmIMP1) partially reduces parasite replication after challenge with a low dose of E. maxima oocysts. In the present study, we have reassessed the efficacy of these experimental vaccines using commercial birds reared at high stocking densities and challenged with both low and high doses of E. maxima to evaluate how well they protect chickens against the negative impacts of disease on production parameters. METHODS: Populations of E. tenella parasites expressing EmAMA1 and EmIMP1 were obtained by nucleofection and propagated in chickens. Cobb500 broilers were immunised with increasing doses of transgenic oocysts and challenged two weeks later with E. maxima to quantify the effect of vaccination on parasite replication, local IFN-γ and IL-10 responses (300 oocysts), as well as impacts on intestinal lesions and body weight gain (10,000 oocysts). RESULTS: Vaccination of chickens with E. tenella expressing EmAMA1, or admixtures of E. tenella expressing EmAMA1 or EmIMP1, was safe and induced partial protection against challenge as measured by E. maxima replication and severity of pathology. Higher levels of protection were observed when both antigens were delivered and was associated with a partial modification of local immune responses against E. maxima, which we hypothesise resulted in more rapid immune recognition of the challenge parasites. CONCLUSIONS: This study offers prospects for future development of multivalent anticoccidial vaccines for commercial chickens. Efforts should now be focused on the discovery of additional antigens for incorporation into such vaccines.


Asunto(s)
Pollos/parasitología , Coccidiosis/veterinaria , Eimeria tenella , Vacunas Antiprotozoos , Animales , Antígenos de Protozoos/inmunología , Peso Corporal/efectos de los fármacos , Pollos/inmunología , Coccidiosis/prevención & control , Coccidiosis/terapia , Eimeria/efectos de los fármacos , Eimeria/crecimiento & desarrollo , Eimeria/inmunología , Eimeria tenella/efectos de los fármacos , Eimeria tenella/crecimiento & desarrollo , Eimeria tenella/inmunología , Genes Protozoarios/inmunología , Interferón gamma/efectos de los fármacos , Interleucina-10/metabolismo , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/prevención & control , Vacunas Antiprotozoos/biosíntesis , Vacunas Antiprotozoos/uso terapéutico , Transfección , Transgenes/inmunología , Vacunación/métodos , Vacunación/veterinaria , Vacunas Atenuadas/biosíntesis , Vacunas Atenuadas/uso terapéutico
18.
Front Cell Infect Microbiol ; 10: 579833, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33154954

RESUMEN

In vitro development of the complete life cycle of Eimeria species has been achieved in primary cultures of avian epithelial cells with low efficiency. The use of immortalized cell lines simplifies procedures but only allows partial development through one round of parasite invasion and intracellular replication. We have assessed the suitability of Madin-Darby Bovine Kidney (MDBK) cells to support qualitative and quantitative studies on sporozoite invasion and intracellular development of Eimeria tenella. Analysis of parasite ultrastructure by transmission electron microscopy and serial block face-scanning electron microscopy proved the suitability of the system to generate good quality schizonts and first-generation merozoites. Parasite protein expression profiles elucidated by mass spectrometry corroborated previous findings occurring during the development of the parasite such as the presence of alternative types of surface antigen at different stages and increased abundance of proteins from secretory organelles during invasion and endogenous development. Quantitative PCR (qPCR) allowed the tracking of development by detecting DNA division, whereas reverse transcription qPCR of sporozoite- and merozoite-specific genes could detect early changes before cell division and after merozoite formation, respectively. These results correlated with the analysis of development using ImageJ semi-automated image analysis of fluorescent parasites, demonstrating the suitability and reproducibility of the MDBK culture system. This systems also allowed the evaluation of the effects on invasion and development when sporozoites were pre-incubated with anticoccidial drugs, showing similar effects to those reported before. We have described through this study a series of methods and assays for the further application of this in vitro culture model to more complex studies of Eimeria including basic research on parasite cell biology and host-parasite interactions and for screening anticoccidial drugs.


Asunto(s)
Eimeria tenella , Eimeria , Animales , Bovinos , Técnicas de Cultivo de Célula , Pollos , Reproducibilidad de los Resultados , Esporozoítos
19.
Front Vet Sci ; 7: 420, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32851011

RESUMEN

This study investigated the in vitro effects of Greek oregano and garlic essential oils on inhibition of Eimeria parasites and their in vivo effects on production performance, intestinal bacteria counts, and oocyst output. An inhibition assay was performed in vitro using Eimeria tenella Wisconsin strain sporozoites and Madin-Darby bovine kidney (MDBK) cells. Intracellular sporozoite invasion was quantified by detection of E. tenella DNA using qPCR from cell monolayers harvested at 2 and 24 h post-infection. Parasite invasion was inhibited by the oregano essential oil at the concentration of 100 µg/ml by 83 or 93% after 2 or 24 h, respectively. Garlic essential oil reached a maximum inhibition of 70% after 24 h with the 50 µg/ml concentration. Normal morphology was observed in MDBK cells exposed to concentrations of 100 µl/ml of garlic or oregano for over 24 h. In the in vivo trial, 180 male broiler chicks (45.3 ± 0.7 g) were allocated into two treatments (6 pens of 15 chicks per treatment). Control treatment was fed commercial diets without antibiotics or anticoccidials. The ORE-GAR treatment was fed the same control diets, further supplemented with a premix (1 g/kg feed) containing the oregano (50 g/kg premix) and garlic (5 g/kg premix) essential oils. At day 37, all birds were slaughtered under commercial conditions, and intestinal samples were collected. ORE-GAR treatment had improved final body weight (1833.9 vs. 1.685.9 g; p < 0.01), improved feed conversion ratio (1.489 vs. 1.569; p < 0.01), and reduced fecal oocyst excretion (day 28: 3.672 vs. 3.989 log oocysts/g, p < 0.01; day 37: 3.475 vs. 4.007 log oocysts/g, p < 0.001). In the caecal digesta, ORE-GAR treatment had lower total anaerobe counts (8.216 vs. 8.824 CFU/g; p < 0.01), whereas in the jejunum digesta the ORE-GAR treatment had higher counts of E. coli (5.030 vs. 3.530 CFU/g; p = 0.01) and Enterobacteriaceae (5.341 vs. 3.829 CFU/g; p < 0.01), and lower counts of Clostridium perfringens (2.555 vs. 2.882 CFU/g; p < 0.01). In conclusion, the combined supplementation of oregano and garlic essential oils had a potent anticoccidial effect in vitro and a growth-promoting effect in broilers reared in the absence of anticoccidial drugs.

20.
Vet Parasitol ; 159(1): 7-16, 2009 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-19027235

RESUMEN

Neospora caninum tachyzoites were isolated from the brain of an asymptomatic naturally infected calf with precolostral-specific antibodies. The new isolate, named Nc-Spain 1H, was identified as a member of the N. caninum species based on its internal transcribed spacer 1 (ITS-1) sequence and was genetically characterized using microsatellite markers. Multilocus analysis showed that Nc-Spain 1H was genetically different from other N. caninum isolates. We compared the in vitro tachyzoite yield and viability rate of the Nc-Spain 1H and Nc-1 isolates in a plaque assay. The lower tachyzoite yields displayed by Nc-Spain 1H were complemented with a significantly lower viability rate. Moreover, in an in vitro tachyzoite-bradyzoite stage conversion assay, the percentage of Nc-Spain 1H bradyzoite conversion was similar to that of the cystogenic isolate Nc-Liv, with the exception that Nc-Spain 1H produced only intermediate bradyzoites. The pathogenicity of Nc-Spain 1H was examined in BALB/c mice, and the results demonstrated that Nc-Spain 1H failed to induce clinical signs or mortality and that no parasite DNA was detected in the brain during the chronic stage of infection. In a pregnant mouse model, Nc-1 infection resulted in high transplacental transmission, leading to a high neonatal mortality rate over time. In contrast, the offspring survival rate from Nc-Spain 1H-infected dams was almost 100%, and N. caninum DNA was detected in only one pup. These data show that Nc-Spain 1H appears to be a low virulence isolate and may be a suitable candidate for live vaccine development.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Enfermedades de los Bovinos/parasitología , Coccidiosis/veterinaria , Neospora/aislamiento & purificación , Neospora/patogenicidad , Análisis de Varianza , Animales , Anticuerpos Antiprotozoarios/genética , Bovinos , Coccidiosis/parasitología , Femenino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Repeticiones de Microsatélite , Neospora/genética , Reacción en Cadena de la Polimerasa/veterinaria , Estadísticas no Paramétricas , Ensayo de Placa Viral , Virulencia/genética , Virulencia/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA