Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(5): e0029424, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38624200

RESUMEN

Aspergillus oryzae spores, when sprinkled onto steamed rice and allowed to propagate, are referred to as rice "koji." Agmatine, a natural polyamine derived from arginine through the action of arginine decarboxylase (ADC), is abundantly produced by solid state-cultivated rice koji of A. oryzae RIB40 under low pH conditions, despite the apparent absence of ADC orthologs in its genome. Mass spectrometry imaging revealed that agmatine was accumulated inside rice koji at low pH conditions, where arginine was distributed. ADC activity was predominantly observed in substrate mycelia and minimally in aerial mycelia. Natural ADC was isolated from solid state-cultivated A. oryzae rice koji containing substrate mycelia, using ammonium sulfate fractionation, ion exchange, and gel-filtration chromatography. The purified protein was subjected to sodium dodecyl sulfate poly-acrylamide gel electrophoresis (SDS-PAGE), and the detected peptide band was digested for identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The gene AO090102000327 of strain RIB40 was identified, previously annotated as phosphatidylserine decarboxylase (PSD), and encoded a 483-amino acid peptide. Recombinant protein encoded by AO090102000327 was expressed in Escherichia coli cells cultivated at 20°C, resulting in the detection of 49 kDa and 5 kDa peptides. The protein exhibited pyruvoyl-dependent decarboxylase activity, favoring arginine over ornithine and showing no activity with phosphatidylserine. The gene was designated Ao-adc1. Ao-ADC1 expression in rice koji at pH 4-6 was confirmed through western blotting using the anti-Ao-ADC1 serum. These findings indicate that Ao-adc1 encodes arginine decarboxylase involved in agmatine production.IMPORTANCEGene AO090102000327 in A. oryzae RIB40, previously annotated as a PSD, falls into a distinct clade when examining the phylogenetic distribution of PSDs. Contrary to the initial PSD annotation, our analysis indicates that the protein encoded by AO090102000327 is expressed in the substrate mycelia area of solid state-cultivated A. oryzae rice koji and functions as an arginine decarboxylase (ADC). The clade to which Ao-ADC1 belongs includes three other Ao-ADC1 paralogs (AO090103000445, AO090701000800, and AO090701000802) that presumably encode ADC rather than PSDs. Regarding PSD, AO090012000733 and AO090005001124 were speculated to be nonmitochondrial and mitochondrial PSDs in A. oryzae RIB40, respectively.


Asunto(s)
Aspergillus oryzae , Carboxiliasas , Proteínas Fúngicas , Oryza , Aspergillus oryzae/genética , Aspergillus oryzae/enzimología , Carboxiliasas/genética , Carboxiliasas/metabolismo , Carboxiliasas/química , Oryza/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Agmatina/metabolismo
2.
Biosci Biotechnol Biochem ; 87(10): 1236-1248, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37500264

RESUMEN

Aspergillus sojae has traditionally been used in soy sauce brewing. Genetic modification techniques have been established in A. sojae, but it is difficult to apply them to various industrial strains. Although we have previously developed a CRISPR/Cpf1 system for genetic modification of A. sojae, another genome editing system was required for versatile modification. In addition, repetitive genetic modification using the CRISPR system has not been established in A. sojae. In this study, we demonstrated mutagenesis, gene deletion/integration, and large deletion of a chromosomal region in A. sojae using the CRISPR/Cas9 system. We also successfully performed repetitive genetic modification using a method that involved forced recycling of genome-editing plasmids. Moreover, we demonstrated that the effects of genetic modification related to soy sauce brewing differed among A. sojae industrial strains. These results showed that our technique of using the CRISPR/Cas9 system is a powerful tool for genetic modification in A. sojae.


Asunto(s)
Edición Génica , Alimentos de Soja , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Aspergillus/genética
3.
Mol Microbiol ; 115(4): 723-738, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33155715

RESUMEN

Filamentous fungal cells, unlike yeasts, fuse during vegetative growth. The orthologs of mitogen-activated protein (MAP) kinase Fus3 and transcription factor Ste12 are commonly involved in the regulation of cell fusion. However, the specific regulatory mechanisms underlying cell fusion in filamentous fungi have not been revealed. In the present study, we identified the novel protein FsiA as an AoFus3- and AoSte12-interacting protein in the filamentous fungus Aspergillus oryzae. The expression of AonosA and cell fusion-related genes decreased upon fsiA deletion and increased with fsiA overexpression, indicating that FsiA is a positive regulator of cell fusion. In addition, the induction of cell fusion-related genes by fsiA overexpression was also observed in the Aoste12 deletion mutant, indicating that FsiA can induce the cell fusion-related genes in an AoSte12-independent manner. Surprisingly, the fsiA and Aoste12 double deletion mutant exhibited higher cell fusion efficiency and increased mRNA levels of the cell fusion-related genes as compared to the fsiA single deletion mutant, which revealed that AoSte12 represses the cell fusion-related genes in the fsiA deletion mutant. Taken together, our data demonstrate that FsiA activates the cell fusion-related genes by suppressing the negative function of AoSte12 as well as by an AoSte12-independent mechanism.


Asunto(s)
Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factores de Transcripción/metabolismo , Fusión Celular , ADN de Hongos , Genes Fúngicos , Mapas de Interacción de Proteínas , Eliminación de Secuencia
4.
Mol Microbiol ; 113(5): 964-982, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31965663

RESUMEN

Septum formation in fungi is equivalent to cytokinesis. It differs mechanistically in filamentous ascomycetes (Pezizomycotina) from that of ascomycete yeasts by the retention of a central septal pore in the former group. However, septum formation in both groups is accomplished by contractile actin ring (CAR) assembly and constriction. The specific components regulating septal pore organization during septum formation are poorly understood. In this study, a novel Pezizomycotina-specific actin regulatory protein GlpA containing gelsolin domains was identified using bioinformatics. A glpA deletion mutant exhibited increased distances between septa, abnormal septum morphology and defective regulation of septal pore closure. In glpA deletion mutant hyphae, overaccumulation of actin filament (F-actin) was observed, and the CAR was abnormal with improper assembly and failure in constriction. In wild-type cells, GlpA was found at the septum formation site similarly to the CAR. The N-terminal 329 residues of GlpA are required for its localization to the septum formation site and essential for proper septum formation, while its C-terminal gelsolin domains are required for the regular CAR dynamics during septum formation. Finally, in this study we elucidated a novel Pezizomycotina-specific actin modulating component, which participates in septum formation by regulating the CAR dynamics.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Ascomicetos/metabolismo , Aspergillus oryzae/metabolismo , División Celular , Proteínas Fúngicas/metabolismo , Gelsolina/metabolismo , Ascomicetos/genética , Aspergillus oryzae/genética , ADN de Hongos/genética , Proteínas Fúngicas/genética , Gelsolina/genética , Cinética , Mutación , Filogenia , Dominios Proteicos
5.
Mol Microbiol ; 114(4): 626-640, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32634260

RESUMEN

The endophytic fungus Epichloë festucae systemically colonizes the intercellular spaces of cool-season grasses to establish a mutualistic symbiosis. Hyphal growth of the endophyte within the host plant is tightly regulated and synchronized with the growth of the host plant. A genetic screen to identify symbiotic genes identified mutant FR405 that had an antagonistic interaction with the host plant. Perennial ryegrass infected with the FR405 mutant were stunted and underwent premature senescence and death. The disrupted gene in FR405 encodes a nuclear-localized protein, designated as NsiA for nuclear protein for symbiotic infection. Like previously isolated symbiotic mutants the nsiA mutant is defective in hyphal cell fusion. NsiA interacts with Ste12, a C2H2 zinc-finger transcription factor, and a MAP kinase MpkB. Both are known as essential components for cell fusion in other fungal species. In E. festucae, MpkB, but not Ste12, is essential for cell fusion. Expression of several genes required for cell fusion and symbiosis, including proA/adv-1, pro41/ham-6, ham7, ham8, and ham9 were downregulated in the nsiA mutant. However, the NsiA ortholog in Neurospora crassa was not essential for hyphal cell fusion. These results demonstrate that the roles of NsiA and Ste12 orthologs in hyphal cell fusion are distinctive between fungal species.


Asunto(s)
Epichloe/metabolismo , Fusión Celular , Epichloe/enzimología , Epichloe/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Hifa/crecimiento & desarrollo , Lolium/metabolismo , Lolium/microbiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Nucleares/genética , Simbiosis/genética , Factores de Transcripción/metabolismo
6.
Chembiochem ; 22(1): 203-211, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-32885554

RESUMEN

The filamentous fungus Aspergillus oryzae has 27 putative iterative type I polyketide synthase (PKS) gene clusters, but the secondary metabolites produced by them are mostly unknown. Here, we focused on eight clusters that were reported to be expressed at relatively high levels in a transcriptome analysis. By comparing metabolites between an octuple-deletion mutant of these eight PKS gene clusters and its parent strain, we found that A. oryzae produced 2,4'-dihydroxy-3'-methoxypropiophenone (1) and its precursor, 4'-hydroxy-3'-methoxypropiophenone (3) in a specific liquid medium. Furthermore, an iterative type I PKS (PpsB) encoded by AO090102000166 and an acetyl-CoA ligase (PpsA) encoded downstream from ppsB were shown to be essential for their biosynthesis. PpsC, encoded upstream from ppsB, was shown to have 3-binding activity (Kd =26.0±6.2 µM) and is suggested to be involved in the conversion of 3 to 1. This study deepens our understanding of cryptic secondary metabolism in A. oryzae.


Asunto(s)
Aspergillus oryzae/genética , Sintasas Poliquetidas/genética , Aspergillus oryzae/metabolismo , Estructura Molecular , Sintasas Poliquetidas/metabolismo
7.
Biosci Biotechnol Biochem ; 84(10): 2179-2183, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32657224

RESUMEN

We developed an approach to genome editing of the white koji fungus, Aspergillus luchuensis mut. kawachii using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. Co-transformation of AMA1-based Cas9 and gRNA expression plasmids achieved efficient gene knockout in A. kawachii. The plasmids were easily lost when selective pressure was removed, allowing for successive rounds of genome editing.


Asunto(s)
Aspergillus/genética , Sistemas CRISPR-Cas/genética , Técnicas de Inactivación de Genes/métodos , Secuencia de Bases , Mutación
8.
Angew Chem Int Ed Engl ; 59(41): 17996-18002, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32677206

RESUMEN

Lolitrems are tremorgenic indole diterpenes that exhibit a unique 5/6 bicyclic system of the indole moiety. Although genetic analysis has indicated that the prenyltransferase LtmE and the cytochrome P450 LtmJ are involved in the construction of this unique structure, the detailed mechanism remains to be elucidated. Herein, we report the reconstitution of the biosynthetic pathway for lolitrems employing a recently established genome-editing technique for the expression host Aspergillus oryzae. Heterologous expression and bioconversion of the various intermediates revealed that LtmJ catalyzes multistep oxidation to furnish the lolitrem core. We also isolated the key reaction intermediate with an epoxyalcohol moiety. This observation allowed us to establish the mechanism of radical-induced cyclization, which was firmly supported by density functional theory calculations and a model experiment with a synthetic analogue.


Asunto(s)
Alcoholes/química , Diterpenos/síntesis química , Alcaloides Indólicos/química , Indoles/síntesis química , Ciclización
9.
J Am Chem Soc ; 141(39): 15519-15523, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31535864

RESUMEN

To develop the versatile methodology for genome mining of mushroom metabolites, we examined the production of bioactive diterpenes erinacines using genomic DNA sequences. In this report, we initially identified high expression loci (hot spots) in Aspergillus oryzae by sequencing the genomic DNAs from highly yielding transformants which were obtained in our previous biosynthetic studies. Genome editing knock-in of all erinacine biosynthetic genes directly to the hot spot showed that A. oryzae correctly spliced more than 90% of the introns in the mushroom genomic DNA gene sequences. Then, we reconstituted the erinacine biosynthetic gene cluster using two rounds of knock-in of the cDNAs and newly developed repeatable genetic engineering by plasmid recycling. At 100% transformation rate, we obtained a transformant that successfully produced erinacine Q and its intermediates. In this study, we elucidated a biosynthetic pathway of erinacines involving functionally unique hydroxylation supported by dehydrogenase EriH and xylose-specific glycosylation by introducing plant genes for supplying UDP-xylose. Our newly developed hot spot knock-in and plasmid recycling allowed us to avoid a time-consuming screening process and to use unlimited introduction of biosynthetic genes due to marker-free genome editing.


Asunto(s)
Aspergillus oryzae/genética , Diterpenos/metabolismo , ADN de Hongos , Diterpenos/química , Ingeniería Genética , Genoma Fúngico , Genómica , Estructura Molecular , Familia de Multigenes
10.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30478227

RESUMEN

Filamentous fungi are used for food fermentation and industrial production of recombinant proteins. They also serve as a source of secondary metabolites and are recently expected as hosts for heterologous production of useful secondary metabolites. Multiple-step genetic engineering is required to enhance industrial production involving these fungi, but traditional sequential modification of multiple genes using a limited number of selection markers is laborious. Moreover, efficient genetic engineering techniques for industrial strains have not yet been established. We have previously developed a clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9-based mutagenesis technique for the industrial filamentous fungus Aspergillus oryzae, enabling mutation efficiency of 10 to 20%. Here, we improved the CRISPR/Cas9 approach by including an AMA1-based autonomously replicating plasmid harboring the drug resistance marker ptrA By using the improved mutagenesis technique, we successfully modified A. oryzae wild and industrial strains, with a mutation efficiency of 50 to 100%. Conditional expression of the Aoace2 gene from the AMA1-based plasmid severely inhibited fungal growth. This enabled forced recycling of the plasmid, allowing repeated genome editing. Further, double mutant strains were successfully obtained with high efficiency by expressing two guide RNA molecules from the genome-editing plasmid. Cotransformation of fungal cells with the genome-editing plasmid together with a circular donor DNA enabled marker-free multiplex gene deletion/integration in A. oryzae The presented repeatable marker-free genetic engineering approach for mutagenesis and gene deletion/integration will allow for efficient modification of multiple genes in industrial fungal strains, increasing their applicability.IMPORTANCE Multiple gene modifications of specific fungal strains are required for achieving industrial-scale production of enzymes and secondary metabolites. In the present study, we developed an efficient multiple genetic engineering technique for the filamentous fungus Aspergillus oryzae The approach is based on a clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9 system and recycling of an AMA1-based autonomous replicating plasmid. Because the plasmid harbors a drug resistance marker (ptrA), the approach does not require the construction of auxotrophic industrial strains prior to genome editing and allows for forced recycling of the gene-editing plasmid. The established plasmid-recycling technique involves an Aoace2-conditional expression cassette, whose induction severely impairs fungal growth. We used the developed genetic engineering techniques for highly efficient marker-free multiple gene deletion/integration in A. oryzae The genome-editing approaches established in the present study, which enable unlimited repeatable genetic engineering, will facilitate multiple gene modification of industrially important fungal strains.


Asunto(s)
Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Sistemas CRISPR-Cas , Eliminación de Gen , Edición Génica , Ingeniería Genética , Genoma Fúngico , Microbiología Industrial , Mutagénesis , Plásmidos/genética , Plásmidos/metabolismo
11.
Appl Environ Microbiol ; 85(15)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31101615

RESUMEN

Basidiomycete fungi are an attractive resource for biologically active natural products for use in pharmaceutically relevant compounds. Recently, genome projects on mushroom fungi have provided a great deal of biosynthetic gene cluster information. However, functional analyses of the gene clusters for natural products were largely unexplored because of the difficulty of cDNA preparation and lack of gene manipulation tools for basidiomycete fungi. To develop a versatile host for basidiomycete genes, we examined gene expression using genomic DNA sequences in the robust ascomycete host Aspergillus oryzae, which is frequently used for the production of metabolites from filamentous fungi. Exhaustive expression of 30 terpene synthase genes from the basidiomycetes Clitopilus pseudo-pinsitus and Stereum hirsutum showed two splicing patterns, i.e., completely spliced cDNAs giving terpenes (15 cases) and mostly spliced cDNAs, indicating that A. oryzae correctly spliced most introns at the predicted positions and lengths. The mostly spliced cDNAs were expressed after PCR-based removal of introns, resulting in the successful production of terpenes (14 cases). During this study, we observed relatively frequent mispredictions in the automated program. Hence, the complementary use of A. oryzae expression and automated prediction will be a powerful tool for genome mining.IMPORTANCE The recent large influx of genome sequences from basidiomycetes, which are prolific producers of bioactive natural products, may provide opportunities to develop novel drug candidates. The development of a reliable expression system is essential for the genome mining of natural products because of the lack of a tractable host for heterologous expression of basidiomycete genes. For this purpose, we applied the ascomycete Aspergillus oryzae system for the direct expression of fungal natural product biosynthetic genes from genomic DNA. Using this system, 29 sesquiterpene synthase genes and diterpene biosynthetic genes for bioactive pleuromutilin were successfully expressed. Together with the use of computational tools for intron prediction, this Aspergillus oryzae system represents a practical method for the production of basidiomycete natural products.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Aspergillus oryzae/metabolismo , Basidiomycota , Eurotiales/metabolismo , Genes Fúngicos , Terpenos/metabolismo , Basidiomycota/genética , Microorganismos Modificados Genéticamente/metabolismo , Familia de Multigenes
12.
Biosci Biotechnol Biochem ; 83(8): 1557-1569, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30776970

RESUMEN

In the Pezizomycotina (filamentous ascomycete) species, genes that encode proteins with an HET domain (Pfam: PF06985) are reportedly involved in heterokaryon incompatibility (HI) in which cell death or growth defects are induced after fusion of cells that are genetically incompatible owing to diversities in their nucleotide sequence. HET domain genes are commonly found in Pezizomycotina genomes and are functionally characterized in only a few species. Here, we compared 44 HET domain genes between an incompatible strain pair of Aspergillus oryzae RIB40 and RIB128 and performed inter-strain expression of 37 sequence-diverse genes for mimicking HI. Four HET domain genes were identified to cause severe growth inhibition in a strain- or sequence-specific manner. Furthermore, SNPs responsible for the inhibition of cell growth were identified. This study provides an important insight into the physiological significance of sequence diversity of HET domain genes and their potential functions in HI of A. oryzae.


Asunto(s)
Aspergillus oryzae/crecimiento & desarrollo , Aspergillus oryzae/genética , Genes Fúngicos , Filogenia , Polimorfismo de Nucleótido Simple , Especificidad de la Especie
13.
Biosci Biotechnol Biochem ; 83(7): 1372-1381, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31023165

RESUMEN

The filamentous fungus Aspergillus oryzae was recently used as a heterologous host for fungal secondary metabolite production. Here, we aimed to produce the plant polyketide curcumin in A. oryzae. Curcumin is synthesized from feruloyl-coenzyme A (CoA) and malonyl-CoA by curcuminoid synthase (CUS). A. oryzae expressing CUS produced curcumin (64 µg/plate) on an agar medium containing feruloyl-N-acetylcysteamine (a feruloyl-CoA analog). To increase curcumin yield, we attempted to strengthen the supply of malonyl-CoA using two approaches: enhancement of the reaction catalyzed by acetyl-CoA carboxylase (ACC), which produces malonyl-CoA from acetyl-CoA, and inactivation of the acetyl-CoA-consuming sterol biosynthesis pathway. Finally, we succeeded in increasing curcumin yield sixfold by the double disruption of snfA and SCAP; SnfA is a homolog of SNF1, which inhibits ACC activity by phosphorylation in Saccharomyces cerevisiae and SCAP is positively related to sterol biosynthesis in Aspergillus terreus. This study provided useful information for heterologous polyketide production in A. oryzae.


Asunto(s)
Aspergillus oryzae/metabolismo , Curcumina/metabolismo , Malonil Coenzima A/metabolismo , Catálisis , Fosforilación , Saccharomyces cerevisiae/metabolismo
14.
Biosci Biotechnol Biochem ; 83(8): 1583-1593, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31189439

RESUMEN

Mutations frequently occur during breeding of sake yeasts and result in unexpected phenotypes. Here, genome editing tools were applied to develop an ideal nonfoam-forming sake yeast strain, K7GE01, which had homozygous awa1∆/awa1∆ deletion alleles that were responsible for nonfoam formation and few off-target mutations. High-dimensional morphological phenotyping revealed no detectable morphological differences between the genome-edited strain and its parent, while the canonical nonfoam-forming strain, K701, showed obvious morphological changes. Small-scale fermentation tests also showed differences between components of sake produced by K7GE01 and K701. The K7GE01 strain produced sake with significant differences in the concentrations of ethyl acetate, malic acid, lactic acid, and acetic acid, while K701 produced sake with more differences. Our results indicated genuine phenotypes of awa1∆/awa1∆ in sake yeast isolates and showed the usefulness of genome editing tools for sake yeast breeding.


Asunto(s)
Bebidas Alcohólicas , Edición Génica , Genoma Fúngico , Saccharomyces cerevisiae/genética , Fermentación , Mutación
15.
J Stroke Cerebrovasc Dis ; 27(3): 716-723, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29126759

RESUMEN

BACKGROUND: Although the impact of malnutrition in patients with acute stroke has been reported, its significance after rehabilitation is not well understood. The geriatric nutritional risk index (GNRI) is a simple and well-established nutritional screening tool that predicts poor prognosis in elderly patients and in those with a high risk of cardiovascular events. We investigated the associations between GNRI and all-cause mortality, cardiovascular events, and infectious diseases in patients with stroke after rehabilitation. METHODS: This study included 138 patients aged 80 years or below who were discharged between 2010 and 2013 in a single center, and followed up for more than 1 year. Malnutrition was defined as a GNRI of 96 or lower. RESULTS: The mean age was 63.9 ± 11.0 years, the mean GNRI at discharge was 98.8 ± 6.5, and the mean total functional independence measure (FIM) score at discharge was 91.8 ± 25.8. Among the patients, 37 (27%) had malnutrition. During the follow-up period, all-cause mortality, cardiovascular events, and infectious diseases were recorded in 11 (8%), 21 (15%), and 20 (15%) patients, respectively. Kaplan-Meier curves showed a significantly higher incidence of each outcome in patients with a GNRI of 96 or lower. In the Cox proportional analysis, GNRI was an independent determinant of all-cause mortality (hazard ratio [HR], .71; 95% confidence interval [CI], .61-.83), cardiovascular events (HR, .87; 95% CI, .80-.95), and infectious diseases (HR, .80; 95% CI, .74-.87) after adjusting for age, gender, and total FIM score. CONCLUSIONS: Malnutrition has a negative impact on prognosis in patients with stroke even after rehabilitation.


Asunto(s)
Enfermedades Cardiovasculares/epidemiología , Enfermedades Transmisibles/epidemiología , Desnutrición/epidemiología , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular/terapia , Anciano , Anciano de 80 o más Años , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/mortalidad , Causas de Muerte , Enfermedades Transmisibles/diagnóstico , Enfermedades Transmisibles/mortalidad , Supervivencia sin Enfermedad , Femenino , Evaluación Geriátrica , Humanos , Incidencia , Japón/epidemiología , Estimación de Kaplan-Meier , Masculino , Desnutrición/diagnóstico , Desnutrición/mortalidad , Desnutrición/fisiopatología , Persona de Mediana Edad , Análisis Multivariante , Evaluación Nutricional , Estado Nutricional , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Factores de Riesgo , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/mortalidad , Accidente Cerebrovascular/fisiopatología , Rehabilitación de Accidente Cerebrovascular/efectos adversos , Rehabilitación de Accidente Cerebrovascular/mortalidad , Factores de Tiempo , Resultado del Tratamiento
16.
Biosci Biotechnol Biochem ; 81(2): 384-395, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27696999

RESUMEN

Autophagy is a conserved process in eukaryotic cells for degradation of cellular proteins and organelles. In filamentous fungi, autophagic degradation of organelles such as peroxisomes, mitochondria, and nuclei occurs in basal cells after the prolonged culture, but its mechanism is not well understood. Here, we functionally analyzed the filamentous fungus Aspergillus oryzae AoAtg26, an ortholog of the sterol glucosyltransferase PpAtg26 involved in pexophagy in the yeast Pichia pastoris. Deletion of Aoatg26 caused a severe decrease in conidiation and aerial hyphae formation, which is typically observed in the autophagy-deficient A. oryzae strains. In addition, cup-shaped AoAtg8-positive membrane structures were accumulated in the Aoatg26 deletion strain, indicating that autophagic process is impaired. Indeed, the Aoatg26 deletion strain was defective in the degradation of peroxisomes, mitochondria, and nuclei. Taken together, AoAtg26 plays an important role for autophagic degradation of organelles in A. oryzae, which may physiologically contribute to the differentiation in filamentous fungi.


Asunto(s)
Aspergillus oryzae/citología , Autofagia , Núcleo Celular/metabolismo , Glicosiltransferasas/metabolismo , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Esteroles/metabolismo , Aspergillus oryzae/enzimología , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Eliminación de Gen , Glicosiltransferasas/química , Glicosiltransferasas/deficiencia , Glicosiltransferasas/genética , Dominios Proteicos , Transporte de Proteínas
17.
Appl Microbiol Biotechnol ; 100(21): 9163-9174, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27405439

RESUMEN

Genomic mapping of mutations using next-generation sequencing technologies has facilitated the identification of genes contributing to fundamental biological processes, including human diseases. However, few studies have used this approach to identify mutations contributing to heterologous protein production in industrial strains of filamentous fungi, such as Aspergillus oryzae. In a screening of A. oryzae strains that hyper-produce human lysozyme (HLY), we previously isolated an AUT1 mutant that showed higher production of various heterologous proteins; however, the underlying factors contributing to the increased heterologous protein production remained unclear. Here, using a comparative genomic approach performed with whole-genome sequences, we attempted to identify the genes responsible for the high-level production of heterologous proteins in the AUT1 mutant. The comparative sequence analysis led to the detection of a gene (AO090120000003), designated autA, which was predicted to encode an unknown cytoplasmic protein containing an alpha/beta-hydrolase fold domain. Mutation or deletion of autA was associated with higher production levels of HLY. Specifically, the HLY yields of the autA mutant and deletion strains were twofold higher than that of the control strain during the early stages of cultivation. Taken together, these results indicate that combining classical mutagenesis approaches with comparative genomic analysis facilitates the identification of novel genes involved in heterologous protein production in filamentous fungi.


Asunto(s)
Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Hongos/genética , Hongos/metabolismo , Muramidasa/metabolismo , Mutación , Proteínas Recombinantes/metabolismo , Análisis Mutacional de ADN , Eliminación de Gen , Genoma Fúngico , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Muramidasa/genética , Proteínas Recombinantes/genética
18.
Biotechnol Lett ; 38(4): 637-42, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26687199

RESUMEN

OBJECTIVES: To develop a genome editing method using the CRISPR/Cas9 system in Aspergillus oryzae, the industrial filamentous fungus used in Japanese traditional fermentation and for the production of enzymes and heterologous proteins. RESULTS: To develop the CRISPR/Cas9 system as a genome editing technique for A. oryzae, we constructed plasmids expressing the gene encoding Cas9 nuclease and single guide RNAs for the mutagenesis of target genes. We introduced these into an A. oryzae strain and obtained transformants containing mutations within each target gene that exhibited expected phenotypes. The mutational rates ranged from 10 to 20 %, and 1 bp deletions or insertions were the most commonly induced mutations. CONCLUSIONS: We developed a functional and versatile genome editing method using the CRISPR/Cas9 system in A. oryzae. This technique will contribute to the use of efficient targeted mutagenesis in many A. oryzae industrial strains.


Asunto(s)
Aspergillus oryzae/genética , Sistemas CRISPR-Cas , Edición Génica/métodos , Genoma Fúngico , Mutagénesis , Tasa de Mutación
19.
Appl Environ Microbiol ; 81(2): 533-43, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25362068

RESUMEN

Filamentous fungi are excellent hosts for industrial protein production due to their superior secretory capacity; however, the yield of heterologous eukaryotic proteins is generally lower than that of fungal or endogenous proteins. Although activating protein folding machinery in the endoplasmic reticulum (ER) improves the yield, the importance of intracellular transport machinery for heterologous protein secretion is poorly understood. Here, using Aspergillus oryzae as a model filamentous fungus, we studied the involvement of two putative lectin-like cargo receptors, A. oryzae Vip36 (AoVip36) and AoEmp47, in the secretion of heterologous proteins expressed in fusion with the endogenous enzyme α-amylase as the carrier. Fluorescence microscopy revealed that mDsRed-tagged AoVip36 localized in the Golgi compartment, whereas AoEmp47 showed localization in both the ER and the Golgi compartment. Deletion of AoVip36 and AoEmp47 improved heterologous protein secretion, but only AoVip36 deletion had a negative effect on the secretion of α-amylase. Analysis of ER-enriched cell fractions revealed that AoVip36 and AoEmp47 were involved in the retention of heterologous proteins in the ER. However, the overexpression of each cargo receptor had a different effect on heterologous protein secretion: AoVip36 enhanced the secretion, whereas AoEmp47 promoted the intracellular retention. Taken together, our data suggest that AoVip36 and AoEmp47 hinder the secretion of heterologous proteins by promoting their retention in the ER but that AoVip36 also promotes the secretion of heterologous proteins. Moreover, we found that genetic deletion of these putative ER-Golgi cargo receptors significantly improves heterologous protein production. The present study is the first to propose that ER-Golgi transport is a bottleneck for heterologous protein production in filamentous fungi.


Asunto(s)
Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Portadoras/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética
20.
Eukaryot Cell ; 13(7): 866-77, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24813188

RESUMEN

The Woronin body is a Pezizomycotina-specific organelle that is typically tethered to the septum, but upon hyphal wounding, it plugs the septal pore to prevent excessive cytoplasmic loss. Leashin (LAH) is a large Woronin body tethering protein that contains highly conserved N- and C-terminal regions and a long (∼2,500-amino-acid) nonconserved middle region. As the involvement of the nonconserved region in Woronin body function has not been investigated, here, we functionally characterized individual regions of the LAH protein of Aspergillus oryzae (AoLAH). In an Aolah disruptant, no Woronin bodies were tethered to the septum, and hyphae had a reduced ability to prevent excessive cytoplasmic loss upon hyphal wounding. Localization analysis revealed that the N-terminal region of AoLAH associated with Woronin bodies dependently on AoWSC, which is homologous to Neurospora crassa WSC (Woronin body sorting complex), and that the C-terminal region was localized to the septum. Elastic movement of Woronin bodies was observed when visualized with an AoLAH N-terminal-region-enhanced green fluorescent protein (EGFP) fusion protein. An N- and C-terminal fusion construct lacking the nonconserved middle region of AoLAH was sufficient for the tethering of Woronin bodies to the septum. However, Woronin bodies were located closer to the septum and exhibited impaired elastic movement. Moreover, expression of middle-region-deleted AoLAH in the Aolah disruptant did not restore the ability to prevent excessive cytoplasmic loss. These findings indicate that the nonconserved middle region of AoLAH has functional importance for regulating the position, movement, and function of Woronin bodies.


Asunto(s)
Aspergillus oryzae/metabolismo , Proteínas Fúngicas/metabolismo , Hifa/metabolismo , Aspergillus oryzae/ultraestructura , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Hifa/ultraestructura , Unión Proteica , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA