Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Macro Lett ; : 201-206, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38261790

RESUMEN

Herein we demonstrate that polyethylene-like bioderived, biodegradable, and fully recyclable unbranched aliphatic polyesters, such as PE-2,18, develop hexagonal crystal structures upon quenching from the melt to temperatures <∼50 °C and orthorhombic-like packing at higher quenching temperatures or after isothermal crystallization. Both crystal types are layered. While all-trans CH2 packing characterizes the structure of the orthorhombic-like form, there is significant conformational disorder in the staggered long CH2 sequences of the hexagonal crystals. On heating, the hexagonal crystals transform to the orthorhombic type at ∼60 °C via melt recrystallization, but no change is apparent during heating samples with the orthorhombic form up to the melting point (∼95 °C). The hexagonal structure is of interest not only because it develops under very rapid quenching from the melt but also because under uniaxial tensile deformation it undergoes a stretch-induced transformation to the orthorhombic structure. Compared to deformation of orthorhombic specimens that maintain the same crystal type, such transformation results in larger strains and enhanced strain hardening, thus representing a desired toughening mechanism for this type of polyethylene-like materials.

2.
Polymers (Basel) ; 13(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34067999

RESUMEN

In this paper we extend the study of polymorphism and crystallization kinetics of aliphatic polyacetals to include shorter (PA-6) and longer (PA-26) methylene lengths in a series of even long-spaced systems. On a deep quenching to 0 °C, the longest even polyacetals, PA-18 and PA-26, develop mesomorphic-like disordered structures which, on heating, transform progressively to hexagonal, Form I, and Form II crystallites. Shorter polyacetals, such as PA-6 and PA-12 cannot bypass the formation of Form I. In these systems a mixture of this form and disordered structures develops even under fast deep quenching. A prediction from melting points that Form II will not develop in polyacetals with eight or fewer methylene groups between consecutive acetals was further corroborated with data for PA-6. The temperature coefficient of the overall crystallization rate of the two highest temperature polymorphs, Form I and Form II, was analyzed from the differential scanning calorimetry (DSC) peak crystallization times. The crystallization rate of Form II shows a deep inversion at temperatures approaching the polymorphic transition region from above. The new data on PA-26 confirm that at the minimum rate the heat of fusion is so low that crystallization becomes basically extinguished. The rate inversion and dramatic drop in the heat of fusion irrespective of crystallization time are associated with a competition in nucleation between Forms I and II. The latter is due to large differences in nucleation barriers between these two phases. As PA-6 does not develop Form II, the rate data of this polyacetal display a continuous temperature gradient. The data of the extended polyacetal series demonstrate the important role of methylene sequence length on polymorphism and crystallization kinetics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA