Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37514602

RESUMEN

Sensing the interaction between the pilot and the control inceptors can provide important information about the pilot's activity during flight, potentially enabling the objective measurement of the pilot workload, the application of preventive actions against loss of situational awareness, and the identification of the insurgence of adverse couplings with the vehicle dynamics. This work presents an innovative pressure-sensing device developed to be seamlessly integrated into the grips of conventional aircraft control inceptors. The sensor, based on frustrated total internal reflection of light, is composed of low-cost elements and can be easily manufactured to be applicable to different hand pressure ranges. The characteristics of the sensor are first demonstrated in laboratory calibration tests. Subsequently, applications in flight simulator testing are presented, focusing on the objective representation of the pilot's instantaneous workload.

2.
Sensors (Basel) ; 20(15)2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32731538

RESUMEN

The interaction between the rotating blades and the external fluid in non-axial flow conditions is the main source of vibratory loads on the main rotor of helicopters. The knowledge or prediction of the produced aerodynamic loads and of the dynamic behavior of the components could represent an advantage in preventing failures of the entire rotorcraft. Some techniques have been explored in the literature, but in this field of application, high accuracy can be reached if a large amount of sensor data and/or a high-fidelity numerical model is available. This paper applies the Kalman filtering technique to rotor load estimation. The nature of the filter allows the usage of a minimum set of sensors. The compensation of a low-fidelity model is also possible by accounting for sensors and model uncertainties. The efficiency of the filter for state and load estimation on a rotating blade is tested in this contribution, considering two different sources of uncertainties on a coupled multibody-aerodynamic model. Numerical results show an accurate state reconstruction with respect to the selected sensor layout. The aerodynamic loads are accurately evaluated in post-processing.

3.
Sci Rep ; 12(1): 19245, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482175

RESUMEN

Sauropod dinosaurs are well known for their massive sizes and long necks and tails. Among sauropods, flagellicaudatan dinosaurs are characterized by extreme tail elongation, which has led to hypotheses regarding tail function, often compared to a whip. Here, we analyse the dynamics of motion of a 3D model of an apatosaurine flagellicaudatan tail using multibody simulation and quantify the stress-bearing capabilities of the associated soft tissues. Such an elongated and slender structure would allow achieving tip velocities in the order of 30 m/s, or 100 km/h, far slower than the speed of sound, due to the combined effect of friction of the musculature and articulations, as well as aerodynamic drag. The material properties of the skin, tendons, and ligaments also support such evidence, proving that in life, the tail would not have withstood the stresses imposed by travelling at the speed of sound, irrespective of the conjectural 'popper', a hypothetical soft tissue structure analogue to the terminal portion of a bullwhip able to surpass the speed of sound.


Asunto(s)
Dinosaurios , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA