Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 96(18): e0081022, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36069552

RESUMEN

Stress granules (SGs) are dynamic structures that store cytosolic messenger ribonucleoproteins. SGs have recently been shown to serve as a platform for activating antiviral innate immunity; however, several pathogenic viruses suppress SG formation to evade innate immunity. In this study, we investigated the relationship between rabies virus (RABV) virulence and SG formation, using viral strains with different levels of virulence. We found that the virulent Nishigahara strain did not induce SG formation, but its avirulent offshoot, the Ni-CE strain, strongly induced SG formation. Furthermore, we demonstrated that the amino acid at position 95 in the RABV matrix protein (M95), a pathogenic determinant for the Nishigahara strain, plays a key role in inhibiting SG formation, followed by protein kinase R (PKR)-dependent phosphorylation of the α subunit of eukaryotic initiation factor 2α (eIF2α). M95 was also implicated in the accumulation of RIG-I, a viral RNA sensor protein, in SGs and in the subsequent acceleration of interferon induction. Taken together, our findings strongly suggest that M95-related inhibition of SG formation contributes to the pathogenesis of RABV by allowing the virus to evade the innate immune responses of the host. IMPORTANCE Rabies virus (RABV) is a neglected zoonotic pathogen that causes lethal infections in almost all mammalian hosts, including humans. Recently, RABV has been reported to induce intracellular formation of stress granules (SGs), also known as platforms that activate innate immune responses. However, the relationship between SG formation capacity and pathogenicity of RABV has remained unclear. In this study, by comparing two RABV strains with completely different levels of virulence, we found that the amino acid mutation from valine to alanine at position 95 of matrix protein (M95), which is known to be one of the amino acid mutations that determine the difference in virulence between the strains, plays a major role in SG formation. Importantly, M95 was involved in the accumulation of RIG-I in SGs and in promoting interferon induction. These findings are the first report of the effect of a single amino acid substitution associated with SGs on viral virulence.


Asunto(s)
Virus de la Rabia , Gránulos de Estrés , Proteínas de la Matriz Viral , Aminoácidos/metabolismo , Animales , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Interferones/inmunología , Proteínas Quinasas/inmunología , ARN Viral/metabolismo , Virus de la Rabia/genética , Virus de la Rabia/patogenicidad , Ribonucleoproteínas/metabolismo , Gránulos de Estrés/genética , Gránulos de Estrés/inmunología , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/inmunología , Proteínas Virales/genética , Proteínas Virales/metabolismo
2.
Histochem Cell Biol ; 160(4): 279-291, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37477836

RESUMEN

Toxoplasma gondii is a highly prevalent obligate apicomplexan parasite that is important in clinical and veterinary medicine. It is known that glycerophospholipids phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn), especially their expression levels and flip-flops between cytoplasmic and exoplasmic leaflets, in the membrane of T. gondii play important roles in efficient growth in host mammalian cells, but their distributions have still not been determined because of technical difficulties in studying intracellular lipid distribution at the nanometer level. In this study, we developed an electron microscopy method that enabled us to determine the distributions of PtdSer and PtdEtn in individual leaflets of cellular membranes by using quick-freeze freeze-fracture replica labeling. Our findings show that PtdSer and PtdEtn are asymmetrically distributed, with substantial amounts localized at the luminal leaflet of the inner membrane complex (IMC), which comprises flattened vesicles located just underneath the plasma membrane (see Figs. 2B and 7). We also found that PtdSer was absent in the cytoplasmic leaflet of the inner IMC membrane, but was present in considerable amounts in the cytoplasmic leaflet of the middle IMC membrane, suggesting a barrier-like mechanism preventing the diffusion of PtdSer in the cytoplasmic leaflets of the two membranes. In addition, the expression levels of both PtdSer and PtdEtn in the luminal leaflet of the IMC membrane in the highly virulent RH strain were higher than those in the less virulent PLK strain. We also found that the amount of glycolipid GM3, a lipid raft component, was higher in the RH strain than in the PLK strain. These results suggest a correlation between lipid raft maintenance, virulence, and the expression levels of PtdSer and PtdEtn in T. gondii.


Asunto(s)
Fosfatidilserinas , Toxoplasma , Animales , Fosfatidilserinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Toxoplasma/metabolismo , Membrana Celular/metabolismo , Microscopía Electrónica , Mamíferos/metabolismo
3.
PLoS Pathog ; 17(7): e1009729, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34237115

RESUMEN

Rabies virus phosphoprotein (P protein) is a multifunctional protein that plays key roles in replication as the polymerase cofactor that binds to the complex of viral genomic RNA and the nucleoprotein (N protein), and in evading the innate immune response by binding to STAT transcription factors. These interactions are mediated by the C-terminal domain of P (PCTD). The colocation of these binding sites in the small globular PCTD raises the question of how these interactions underlying replication and immune evasion, central to viral infection, are coordinated and, potentially, coregulated. While direct data on the binding interface of the PCTD for STAT1 is available, the lack of direct structural data on the sites that bind N protein limits our understanding of this interaction hub. The PCTD was proposed to bind via two sites to a flexible loop of N protein (Npep) that is not visible in crystal structures, but no direct analysis of this interaction has been reported. Here we use Nuclear Magnetic Resonance, and molecular modelling to show N protein residues, Leu381, Asp383, Asp384 and phosphor-Ser389, are likely to bind to a 'positive patch' of the PCTD formed by Lys211, Lys214 and Arg260. Furthermore, in contrast to previous predictions we identify a single site of interaction on the PCTD by this Npep. Intriguingly, this site is proximal to the defined STAT1 binding site that includes Ile201 to Phe209. However, cell-based assays indicate that STAT1 and N protein do not compete for P protein. Thus, it appears that interactions critical to replication and immune evasion can occur simultaneously with the same molecules of P protein so that the binding of P protein to activated STAT1 can potentially occur without interrupting interactions involved in replication. These data suggest that replication complexes might be directly involved in STAT1 antagonism.


Asunto(s)
Evasión Inmune/fisiología , Chaperonas Moleculares/metabolismo , Virus de la Rabia/metabolismo , Rabia/virología , Proteínas Estructurales Virales/metabolismo , Replicación Viral/fisiología , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas de la Nucleocápside/metabolismo , Rabia/metabolismo , Factor de Transcripción STAT1/metabolismo
4.
Arch Virol ; 168(2): 51, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36609930

RESUMEN

Bovine respiratory syncytial virus (BRSV) strains that were detected in Kagoshima prefecture and isolated in Hokkaido between 2017 and 2019, together with a BRSV vaccine strain, were subjected to full-genome sequencing. The BRSV strains identified in Japan were found to be genetically close to each other but distant from the vaccine strains. The deduced amino acids at positions 206 and 208 of the glycoprotein (G protein), which form one of the major epitopes of the recent Japanese BRSV strains, were different from those of the vaccine strains. Therefore, the recent Japanese BRSV strains might be antigenically different from the BRSV vaccine strains.


Asunto(s)
Enfermedades de los Bovinos , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Bovino , Animales , Bovinos , Virus Sincitial Respiratorio Bovino/genética , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/veterinaria , Infecciones por Virus Sincitial Respiratorio/genética , Japón , Secuencia de Bases , Anticuerpos Antivirales
5.
Arch Virol ; 169(1): 7, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082138

RESUMEN

Akabane virus (AKAV) is a member of the genus Orthobunyavirus, family Peribunyaviridae. In addition to AKAV strains that cause fetal Akabane disease, which is characterized by abortion in ruminants, some AKAV strains cause postnatal infection characterized by nonsuppurative encephalomyelitis in ruminants. Here, we focused on the NSs protein, a virulence factor for most viruses belonging to the genus Orthobunyavirus, and we hypothesized that this protein would act as a neurovirulence factor in AKAV strains causing postnatal encephalomyelitis. We generated AKAV strains that were unable to produce the NSs protein, derived from two different genogroups, genogroups I and II, and then examined the role of their NSs proteins by inoculating mice intracerebrally with these modified viruses. Our results revealed that the neurovirulence of genogroup II strains is dependent on the NSs protein, whereas that of genogroup I strains is independent of this protein. Notably, infection of primary cultured bovine cells with these viruses suggested that the NSs proteins of both genogroups suppress innate immune-related gene expression with equal efficiency. These results indicate differences in the determinants of virulence of orthobunyaviruses.


Asunto(s)
Infecciones por Bunyaviridae , Encefalomielitis , Orthobunyavirus , Embarazo , Femenino , Bovinos , Animales , Ratones , Infecciones por Bunyaviridae/veterinaria , Orthobunyavirus/genética , Genotipo , Rumiantes
6.
Microbiol Immunol ; 67(4): 185-193, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36628409

RESUMEN

Newcastle disease caused by highly pathogenic viruses of avian paramyxovirus serotype-1 (APMV-1) is a highly contagious poultry disease. Although a large-scale epidemic of Newcastle disease had occurred in Japan between the 1950s and the 2000s, there have been no outbreaks anywhere since 2010. In addition, there are no reports of epidemiological surveys of APMV-1 in wild birds in Japan in the last 10 years. We conducted the first epidemiological survey of APMV-1 in the Izumi plain, Kagoshima prefecture of southern Japan from the winter of 2018 to 2022. A total of 15 APMV-1 strains were isolated, and isolation rates from roosting water and duck fecal samples were 2.51% and 0.10%, respectively. These results indicate that the isolation method from environmental water may be useful for efficient surveillance of APMV-1 in wild birds. Furthermore, this is the first report on the success of APMV-1 isolation from environmental water samples. Genetic analysis of the Fusion (F) gene showed that all APMV-1 isolates were closely related to virus strains circulating among waterfowl in Far East Asian countries. All isolates have avirulent motifs in their cleavage site of F genes, all of which were presumed to be low pathogenic viruses in poultry. However, pathogenicity test using embryonated chicken eggs demonstrated that some isolates killed all chicken embryos regardless of viral doses inoculated (102 -106 50% egg infectious dose). These results indicated that APMV-1 strains, which are potentially pathogenic to chickens, are continuously brought into the Izumi plain by migrating wild birds.


Asunto(s)
Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle , Embrión de Pollo , Animales , Virus de la Enfermedad de Newcastle/genética , Pollos , Japón/epidemiología , Serogrupo , Estaciones del Año , Filogenia , Animales Salvajes
7.
Xenobiotica ; 53(10-11): 581-586, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37991059

RESUMEN

Toxoplasma gondii is an intracellular protozoan parasite causing toxoplasmosis, an infectious disease affecting warm-blooded vertebrates worldwide. Many drug-metabolizing enzymes are located in the liver, a major organ of drug metabolism, and their function can be affected by pathogen infection.Using next-generation sequencing (RNA-seq) and quantitative polymerase chain reaction (qPCR), changes in the hepatic expressions of drug-metabolizing enzymes were analysed in mice chronically infected with T. gondii. The analysis found that, among drug-metabolizing enzymes, 22 genes were upregulated and 28 genes were downregulated (≥1.5-fold); of these 5 and 17 genes, respectively, were cytochromes P450 (Cyp or P450).Subsequent qPCR analysis showed that six P450 genes were upregulated significantly (≥1.5-fold, p < 0.05), namely, Cyp1b1, Cyp2c29, Cyp2c65, Cyp2d9, Cyp2d12, and Cyp3a59, whereas nine P450 genes were downregulated significantly (≥1.5-fold, p < 0.05), namely, Cyp2c38, Cyp2c39, Cyp2c44, Cyp2c69, Cyp2d40, Cyp2e1, Cyp3a11, Cyp3a41, and Cyp3a44.Moreover, metabolic assays in infected mouse liver using typical P450 substrates revealed that midazolam 1'-hydroxylation and testosterone 2-hydroxylation activities decreased significantly (≥1.5-fold, p < 0.05), whereas testosterone 16-hydroxylation activity increased significantly (≥1.5-fold, p < 0.05).Chronic Toxoplasma infection affects drug metabolism, at least partly, by altering the gene expressions of drug-metabolizing enzymes, including P450s.


Asunto(s)
Toxoplasma , Animales , Ratones , Toxoplasma/genética , Toxoplasma/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Hígado/metabolismo , Testosterona/metabolismo , Expresión Génica
8.
J Gen Virol ; 103(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35175915

RESUMEN

Avian G18P[17] rotaviruses with similar complete genome constellation, including strains that showed pathogenicity in mammals, have been detected worldwide. However, it remains unclear how these strains spread geographically. In this study, to investigate the role of migratory birds in the dispersion of avian rotaviruses, we analysed whole genetic characters of the rotavirus strain RK1 that was isolated from a migratory species of birds [velvet scoter (Melanitta fusca)] in Japan in 1989. Genetic analyses revealed that the genotype constellation of the RK1 strain, G18-P[17]-I4-R4-C4-M4-A21-N4-T4-E4-H4, was highly consistent with those of other G18P[17] strains detected in various parts of the world, supporting the possibility that the G18P[17] strains spread via migratory birds that move over a wide area. Furthermore, the RK1 strain induced diarrhoea in suckling mice after oral gastric inoculation, indicating that at least some of the rotaviruses that originated from migratory birds are infectious to and pathogenic in mammals. In conclusion, it was demonstrated that migratory birds may contribute to the global spread of avian rotaviruses that are pathogenic in mammalian species.


Asunto(s)
Enfermedades de las Aves/virología , Genoma Viral , ARN Viral , Infecciones por Rotavirus/virología , Rotavirus/clasificación , Animales , Aves
9.
J Gen Virol ; 103(10)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36223171

RESUMEN

A recent study demonstrated the possibility that migratory birds are responsible for the global spread of avian rotavirus A (RVA). However, little is known about what types of RVAs are retained in migratory birds. In this study, to obtain information on RVA strains in migratory birds, we characterised an RVA strain, Ho374, that was detected in a faecal sample from a gull species (Larus sp.). Genetic analysis revealed that all 11 genes of this strain were classified as new genotypes (G28-P[39]-I21-R14-C14-M13-A24-N14-T16-E21-H16). This clearly indicates that the genetic diversity of avian RVAs is greater than previously recognised. Our findings highlight the need for investigations of RVA strains retained in migratory birds, including gulls.


Asunto(s)
Charadriiformes , Infecciones por Rotavirus , Rotavirus , Animales , Aves , Genoma Viral , Genotipo , Filogenia , Rotavirus/genética , Infecciones por Rotavirus/veterinaria
10.
J Gen Virol ; 103(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35749287

RESUMEN

Avian rotavirus A (RVA) is one of major enteric pathogens that cause diarrhoea in young avian individuals. Importantly, some of the avian RVA strains of G18P[17] genotype are naturally transmitted to and cause clinical diseases in mammalian species, indicating their potential risks to animal health. Although molecular information on the pathogenesis by avian RVA strains will be useful for estimating their risks, the absence of a reverse genetics (RG) system for these strains has hindered the elucidation of their pathogenic mechanisms. In this study, we aimed to establish an RG system for the avian G18P[17] prototype strain PO-13, which was isolated from a pigeon in Japan in 1983 and was experimentally shown to be pathogenic in suckling mice. Transfection with plasmids expressing 11 genomic RNA segments of the strain resulted in rescue of the infectious virus with an artificially introduced genetic marker on its genome, indicating that an RG system for the PO-13 strain was successfully established. The rescued recombinant strain rPO-13 had biological properties almost identical to those of its wild-type strain (wtPO-13). Notably, both rPO-13 and wtPO-13 induced diarrhoea in suckling mice with similar efficiencies. It was thus demonstrated that the RG system will be useful for elucidating the pathogenic mechanisms of the PO-13 strain at the molecular level. This is the first report of the establishment of an RG system for an avian RVA strain.


Asunto(s)
Infecciones por Rotavirus , Rotavirus , Animales , Columbidae , Diarrea/veterinaria , Genoma Viral , Genotipo , Mamíferos , Ratones , Filogenia , Genética Inversa/métodos , Rotavirus/genética , Infecciones por Rotavirus/veterinaria
11.
J Gen Virol ; 102(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33616517

RESUMEN

Since the influenza pandemic in 2009, the causative agent 'A(H1N1)pdm09 virus', has been circulating in both human and swine populations. Although phylogenetic analyses of the haemagglutinin (HA) gene segment have revealed broader genetic diversity of A(H1N1)pdm09-related swine influenza A viruses (swIAVs) compared with human A(H1N1)pdm09 viruses, it remains unclear whether the genetic diversity reflects the antigenic differences in HA. To assess the impact of the diversity of the HA gene of A(H1N1)pdm09-related swIAVs on HA antigenicity, we characterized 12 swIAVs isolated in Japan from 2013 to 2018. We used a ferret antiserum and a panel of anti-HA mouse monoclonal antibodies (mAbs) raised against an early A(H1N1)pdm09 isolate. The neutralization assay with the ferret antiserum revealed that five of the 12 swIAVs were significantly different in their HA antigenicity from the early A(H1N1)pdm09 isolate. The mAbs also showed differential neutralization patterns depending on the swIAV strains. In addition, the single amino acid substitution at position 190 of HA, which was found in one of the five antigenically different swIAVs but not in human isolates, was shown to be one of the critical determinants for the antigenic difference of swIAV HAs. Two potential N-glycosylation sites at amino acid positions 185 and 276 of the HA molecule were identified in two antigenically different swIAVs. These results indicated that the genetic diversity of HA in the A(H1N1)pdm09-related swIAVs is associated with their HA antigenic variation. Our findings highlighted the need for surveillance to monitor the emergence of swIAV antigenic variants with public health importance.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Sustitución de Aminoácidos , Animales , Variación Antigénica , Perros , Femenino , Hurones , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/virología , Japón , Ratones , Infecciones por Orthomyxoviridae/virología , Filogenia , Porcinos/virología
12.
J Gen Virol ; 102(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33891533

RESUMEN

We previously reported that the avirulent fixed rabies virus strain Ni-CE induces a clear cytopathic effect in mouse neuroblastoma cells, whereas its virulent progenitor, the Nishigahara strain, does not. Infection with Nishigahara and Ni-CE mutants containing a single amino acid substitution in the matrix protein (M) demonstrated that the amino acid at position 95 of M (M95) is a cytopathic determinant. The characteristics of cell death induced by Ni-CE infection resemble those of apoptosis (rounded and shrunken cells, DNA fragmentation), but the intracellular signalling pathway for this process has not been fully investigated. In this study, we aimed to elucidate the mechanism by which M95 affects cell death induced by human neuroblastoma cell infection with the Nishigahara, Ni-CE and M95-mutated strains. We demonstrated that the Ni-CE strain induced DNA fragmentation, cell membrane disruption, exposure of phosphatidylserine (PS), activation of caspase-3/7 and anti-poly (ADP-ribose) polymerase 1 (PARP-1) cleavage, an early apoptosis indicator, whereas the Nishigahara strain did not induce DNA fragmentation, caspase-3/7 activation, cell membrane disruption, or PARP-1 cleavage, but did induce PS exposure. We also demonstrated that these characteristics were associated with M95 using M95-mutated strains. However, we found that Ni-CE induced cell death despite the presence of a caspase inhibitor, Z-VAD-FMK. In conclusion, our data suggest that M95 mutation-related cell death is caused by both the caspase-dependent and -independent pathways.


Asunto(s)
Efecto Citopatogénico Viral , Virus de la Rabia , Rabia/virología , Proteínas de la Matriz Viral/genética , Sustitución de Aminoácidos , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Muerte Celular , Línea Celular Tumoral , Daño del ADN , Humanos , Virus de la Rabia/genética , Virus de la Rabia/patogenicidad
13.
Arch Virol ; 165(3): 643-659, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31925543

RESUMEN

The Izumi plain in Kagoshima Prefecture, Japan, is an overwintering site for migratory ducks and endangered cranes. We have surveyed avian influenza viruses (AIVs) in this area since 2012 and isolated low-pathogenic AIVs (LPAIVs) of various subtypes every winter season. H3N8 LPAIVs were isolated during the 2012/13 and 2016/17 seasons, and H4N6 LPAIVs were isolated during the 2012/13 and 2013/14 seasons. In the 2017/18 season, one H3N8 and two H4N6 LPAIV strains were isolated from environmental water samples. Genetic and phylogenetic analysis for each gene segment from these H3N8 and H4N6 LPAIVs suggested that our isolates were genetic reassortants generated by intermixing between AIVs circulating not only in Eurasia but also in Africa and/or North America. Comparison of the genetic constellations of our three isolates with their counterparts isolated during previous seasons from the Izumi plain revealed a drastic transition in the genetic constellations of both subtypes. These findings emphasize the importance of continuous surveillance of AIVs on the Izumi plain.


Asunto(s)
Aves/virología , Patos/virología , Genoma Viral/genética , Subtipo H3N8 del Virus de la Influenza A/genética , Gripe Aviar/virología , África , Secuencia de Aminoácidos , Migración Animal , Animales , Animales Salvajes/virología , Secuencia de Bases , Europa (Continente) , Variación Genética/genética , Subtipo H3N8 del Virus de la Influenza A/aislamiento & purificación , Japón , América del Norte , Filogenia , Recombinación Genética/genética , Análisis de Secuencia de ARN
14.
Histochem Cell Biol ; 152(5): 365-375, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31542792

RESUMEN

Glycosylphosphatidylinositol (GPI)-anchored proteins typically localise to lipid rafts. GPI-anchored protein microdomains may be present in the plasma membrane; however, they have been studied using heterogeneously expressed GPI-anchored proteins, and the two-dimensional distributions of endogenous molecules in the plasma membrane are difficult to determine at the nanometre scale. Here, we used immunoelectron microscopy using a quick-freezing and freeze-fracture labelling (QF-FRL) method to examine the distribution of the endogenous GPI-anchored protein SAG1 in Toxoplasma gondii at the nanoscale. QF-FRL physically immobilised molecules in situ, minimising the possibility of artefactual perturbation. SAG1 labelling was observed in the exoplasmic, but not cytoplasmic, leaflets of T. gondii plasma membrane, whereas none was detected in any leaflet of the inner membrane complex. Point pattern analysis of SAG1 immunogold labelling revealed mostly random distribution in T. gondii plasma membrane. The present method obtains information on the molecular distribution of natively expressed GPI-anchored proteins and demonstrates that SAG1 in T. gondii does not form significant microdomains in the plasma membrane.


Asunto(s)
Antígenos de Protozoos/análisis , Membrana Celular/química , Glicosilfosfatidilinositoles/análisis , Proteínas Protozoarias/análisis , Toxoplasma/química , Animales , Antígenos de Protozoos/metabolismo , Membrana Celular/metabolismo , Fibroblastos/química , Fibroblastos/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Humanos , Ratones , Microscopía Inmunoelectrónica , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo
15.
Vet Pathol ; 56(5): 711-714, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30991905

RESUMEN

Porcine epidemic diarrhea virus (PEDV) induces an often fatal gastrointestinal disease in piglets. In this study, we performed a PEDV infection experiment with the Microminipig, the smallest of experimental minipigs, as a novel small animal model. We orally inoculated a neonatal Microminipig with an intestinal homogenate of a PEDV-infected pig and housed it in a small cage originally designed for rats in an animal biosafety level 2 facility. The infected Microminipig showed the typical signs of porcine epidemic diarrhea (PED), such as watery diarrhea, loss of appetite and weight loss. We also recognized a high amount of excreted PEDV in its rectal swabs and villus atrophy of the small intestine. These results suggest that the Microminipig is a good small animal model for PED, which may contribute to a better understanding of the pathogenesis of PEDV.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos/virología , Porcinos Enanos , Animales , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Intestino Delgado/virología , Porcinos , Enfermedades de los Porcinos/patología
16.
J Virol ; 90(18): 8226-37, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27384657

RESUMEN

UNLABELLED: Rabies virus (RABV) P gene mRNA encodes five in-frame start codons, resulting in expression of full-length P protein (P1) and N-terminally truncated P proteins (tPs), designated P2, P3, P4, and P5. Despite the fact that some tPs are known as interferon (IFN) antagonists, the importance of tPs in the pathogenesis of RABV is still unclear. In this study, to examine whether tPs contribute to pathogenesis, we exploited a reverse genetics approach to generate CE(NiP)ΔP2-5, a mutant of pathogenic CE(NiP) in which the P gene was mutated by replacing all of the start codons (AUG) for tPs with AUA. We confirmed that while CE(NiP) expresses detectable levels of P2 and P3, CE(NiP)ΔP2-5 has an impaired ability to express these tPs. After intramuscular inoculation, CE(NiP)ΔP2-5 caused significantly lower morbidity and mortality rates in mice than did CE(NiP), indicating that tPs play a critical role in RABV neuroinvasiveness. Further examinations revealed that this less neuroinvasive phenotype of CE(NiP)ΔP2-5 correlates with its impaired ability to replicate in muscle cells, indicative of the importance of tPs in viral replication in muscle cells. We also demonstrated that CE(NiP)ΔP2-5 infection induced a higher level of Ifn-ß gene expression in muscle cells than did CE(NiP) infection, consistent with the results of an IFN-ß promoter reporter assay suggesting that all tPs function to antagonize IFN induction in muscle cells. Taken together, our findings strongly suggest that tPs promote viral replication in muscle cells through their IFN antagonist activities and thereby support infection of peripheral nerves. IMPORTANCE: Despite the fact that previous studies have demonstrated that P2 and P3 of RABV have IFN antagonist activities, the actual importance of tPs in pathogenesis has remained unclear. Here, we provide the first evidence that tPs contribute to the pathogenesis of RABV, especially its neuroinvasiveness. Our results also show the mechanism underlying the neuroinvasiveness driven by tPs, highlighting the importance of their IFN antagonist activities, which support viral replication in muscle cells.


Asunto(s)
Factores Inmunológicos/metabolismo , Interferón beta/antagonistas & inhibidores , Fosfoproteínas/metabolismo , Isoformas de Proteínas/metabolismo , Virus de la Rabia/patogenicidad , Rabia/patología , Proteínas Estructurales Virales/metabolismo , Animales , Encéfalo/virología , Línea Celular , Cricetinae , Factores Inmunológicos/genética , Inyecciones Intramusculares , Ratones , Chaperonas Moleculares , Músculos/virología , Fosfoproteínas/genética , Isoformas de Proteínas/genética , Rabia/virología , Virus de la Rabia/genética , Genética Inversa , Análisis de Supervivencia , Proteínas Estructurales Virales/genética , Virulencia , Replicación Viral
17.
Microbiol Immunol ; 61(11): 513-518, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29023947

RESUMEN

An influenza A virus of H4N6 subtype was isolated from the Izumi plain, Japan, in 2013. Genetic analyses revealed that two viral genes (M and NS gene segments) of this isolate were genetically distinct from those of the H4N6 virus isolated from the same place in 2012. Furthermore, three viral genes (PB2, PB1 and M gene segments) of this isolate share high similarity with those of the North American isolates of 2014. These results suggest a high frequency of genetic reassortment of avian influenza viruses in Asian waterfowl and intercontinental movements of avian influenza viruses via migratory waterfowl.


Asunto(s)
Animales Salvajes/virología , Patos , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Animales , Virus de la Influenza A/clasificación , Japón , Filogenia , Recombinación Genética , Proteínas Virales/genética
18.
J Gen Virol ; 97(2): 316-326, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26647356

RESUMEN

The P protein of rabies virus (RABV) is known to interfere with the phosphorylation of the host IFN regulatory factor 3 (IRF-3) and to consequently inhibit type I IFN induction. Previous studies, however, have only tested P proteins from laboratory-adapted fixed virus strains, and to the best of our knowledge there is no report about the effect of P proteins from street RABV strains or other lyssaviruses on the IRF-3-mediated type I IFN induction system. In this study, we evaluated the inhibitory effect of P proteins from several RABV strains, including fixed and street virus strains and other lyssaviruses (Lagos bat, Mokola and Duvenhage viruses), on IRF-3 signalling. All P proteins tested inhibited retinoic acid-inducible gene-1 (RIG-I)- and TANK binding kinase 1 (TBK1)-mediated IRF-3-dependent IFN-ß promoter activities. On the other hand, the P proteins from the RABV street strains 1088 and HCM-9, but not from fixed strains Nishigahara (Ni) and CVS-11 and other lyssaviruses tested, significantly inhibited I-kappa B kinase ϵ (IKKϵ)-inducible IRF-3-dependent IFN-ß promoter activity. Importantly, we revealed that the P proteins from the 1088 and HCM-9 strains, but not from the remaining viruses, interacted with IKKϵ. By using expression plasmids encoding chimeric P proteins from the 1088 strain and Ni strain, we found that the C-terminal region of the P protein is important for the interaction with IKKϵ. These findings suggest that the P protein of RABV street strains may contribute to efficient evasion of host innate immunity.


Asunto(s)
Interacciones Huésped-Patógeno , Quinasa I-kappa B/metabolismo , Factor 3 Regulador del Interferón/antagonistas & inhibidores , Interferón Tipo I/antagonistas & inhibidores , Fosfoproteínas/metabolismo , Virus de la Rabia/inmunología , Virus de la Rabia/fisiología , Proteínas Estructurales Virales/metabolismo , Línea Celular , Regulación de la Expresión Génica , Humanos , Evasión Inmune , Chaperonas Moleculares , Regiones Promotoras Genéticas , Mapeo de Interacción de Proteínas , Transcripción Genética
19.
Arch Virol ; 161(8): 2189-95, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27224981

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is the etiological agent of porcine epidemic diarrhea (PED), which is threatening the swine industry all over the world. In Japan, although there were no reported PED cases from 2007 to 2012, a large-scale PED outbreak started in 2013, causing severe economic losses. Although several PEDV studies have been conducted in Japan, more PEDV isolates and sequence information are needed to understand the molecular biology and epidemiology of PEDV. Here, we isolated seven Japanese PEDV strains from intestinal tissue samples collected in 2014 and determined the spike gene sequences of 13 Japanese PEDV strains, including the above seven isolates. Phylogenetic analysis shows that all of the strains are genetically distinct from classical Japanese PEDV strains isolated prior to 2013 and can be classified into two different genotypes: 12 strains belong to the North American clade composed of recent highly pathogenic PEDV strains, and the remaining one strain belongs to the so-called insertion deletion (INDEL) clade. These data suggest multiple PEDV invasions from abroad to Japan. Notably, compared to classical Japanese strains, all of the recent Japanese strains have two amino acid substitutions in a known neutralizing epitope. In addition, one of the strains acquired an additional mutation in another neutralizing epitope that is highly conserved among PEDVs, including the classical and recent isolates. Our isolates and findings will be useful for future investigations aimed at understanding, controlling, and preventing PED.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Enfermedades de los Porcinos/virología , Secuencia de Aminoácidos , Animales , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Japón/epidemiología , Datos de Secuencia Molecular , Filogenia , Virus de la Diarrea Epidémica Porcina/química , Virus de la Diarrea Epidémica Porcina/clasificación , Alineación de Secuencia , Porcinos/virología , Enfermedades de los Porcinos/epidemiología , Proteínas Virales/química , Proteínas Virales/genética
20.
Virus Genes ; 52(5): 671-8, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27290717

RESUMEN

Adenoviruses are widespread in human population as well as in great apes, although the data about the naturally occurring adenovirus infections remain rare. We conducted the surveillance of adenovirus infection in wild western lowland gorillas in Moukalaba-Doudou National Park (Gabon), in order to investigate naturally occurring adenovirus in target gorillas and tested specifically a possible zoonotic transmission with local people inhabiting the vicinity of the park. Fecal samples were collected from western lowland gorillas and humans, and analyzed by PCR. We detected adenoviral genes in samples from both gorillas and the local people living around the national park, respectively: the overall prevalence rates of adenovirus were 24.1 and 35.0 % in gorillas and humans, respectively. Sequencing revealed that the adenoviruses detected in the gorillas were members of Human mastadenovirus B (HAdV-B), HAdV-C, or HAdV-E, and those in the humans belonged to HAdV-C or HAdV-D. Although HAdV-C members were detected in both gorillas and humans, phylogenetic analysis revealed that the virus detected in gorillas are genetically distinct from those detected in humans. The HAdV-C constitutes a single host lineage which is compatible with the host-pathogen divergence. However, HAdV-B and HAdV-E are constituted by multiple host lineages. Moreover, there is no evidence of zoonotic transmission thus far. Since the gorilla-to-human transmission of adenovirus has been shown before, the current monitoring should be continued in a broader scale for getting more insights in the natural history of naturally occurring adenoviruses and for the safe management of gorillas' populations.


Asunto(s)
Infecciones por Adenoviridae/epidemiología , Adenoviridae/clasificación , Adenoviridae/aislamiento & purificación , Gorilla gorilla/virología , Adenoviridae/genética , Infecciones por Adenoviridae/virología , Animales , Estudios Epidemiológicos , Heces/virología , Gabón/epidemiología , Humanos , Epidemiología Molecular/métodos , Parques Recreativos , Filogenia , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA