Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Plant J ; 118(5): 1635-1651, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38498624

RESUMEN

The SID2 (SA INDUCTION-DEFICIENT2) gene that encodes ICS1 (isochorismate synthase), plays a central role in salicylic acid biosynthesis in Arabidopsis. The sid2 and NahG (encoding a bacterial SA hydroxylase) overexpressing mutants (NahG-OE) have currently been shown to outperform wild type, presenting delayed leaf senescence, higher plant biomass and better seed yield. When grown under sulfate-limited conditions (low-S), sid2 mutants exhibited early leaf yellowing compared to the NahG-OE, the npr1 mutant affected in SA signaling pathway, and WT. This indicated that the hypersensitivity of sid2 to sulfate limitation was independent of the canonical npr1 SA-signaling pathway. Transcriptomic and proteomic analyses revealed that major changes occurred in sid2 when cultivated under low-S, changes that were in good accordance with early senescence phenotype and showed the exacerbation of stress responses. The sid2 mutants displayed a lower sulfate uptake capacity when cultivated under low-S and lower S concentrations in their rosettes. Higher glutathione concentrations in sid2 rosettes under low-S were in good accordance with the higher abundance of proteins involved in glutathione and ascorbate redox metabolism. Amino acid and lipid metabolisms were also strongly modified in sid2 under low-S. Depletion of total fatty acids in sid2 under low-S was consistent with the fact that S-metabolism plays a central role in lipid synthesis. Altogether, our results show that functional ICS1 is important for plants to cope with S limiting conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Transferasas Intramoleculares , Azufre , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Azufre/metabolismo , Mutación , Regulación de la Expresión Génica de las Plantas , Ácido Salicílico/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Proteómica , Transcriptoma , Multiómica
2.
J Exp Bot ; 74(5): 1489-1500, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36528796

RESUMEN

Proline is an amino acid that is degraded in the mitochondria by the sequential action of proline dehydrogenase (ProDH) and pyrroline-5-carboxylate dehydrogenase (P5CDH) to form glutamate. We investigated the phenotypes of Arabidopsis wild-type plants, the knockout prodh1 prodh2 double-mutant, and knockout p5cdh allelic mutants grown at low and high nitrate supplies. Surprisingly, only p5cdh presented lower seed yield and produced lighter seeds. Analyses of elements in above-ground organs revealed lower C concentrations in the p5cdh seeds. Determination of C, N, and dry matter partitioning among the above-ground organs revealed a major defect in stem-to-seed resource allocations in this mutant. Again surprisingly, defects in C, N, and biomass allocation to seeds dramatically increased in high-N conditions. 15N-labelling consistently confirmed the defect in N remobilization from the rosette and stem to seeds in p5cdh. Consequently, the p5cdh mutants produced morphologically abnormal, C-depleted seeds that displayed very low germination rates. The most striking result was the strong amplification of the N-remobilization defects in p5cdh under high nitrate supply, and interestingly this phenotype was not observed in the prodh1 prodh2 double-mutant irrespective of nitrate supply. This study reveals an essential role of P5CDH in carbon and nitrogen remobilization for reserve accumulation during seed development in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismo , Plantas/metabolismo , Prolina Oxidasa/genética , Prolina Oxidasa/metabolismo , Semillas
3.
Plant J ; 105(4): 1083-1097, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33222335

RESUMEN

Plant responses to NH4+ stress are complex, and multiple mechanisms underlying NH4+ sensitivity and tolerance in plants may be involved. Here, we demonstrate that macro- and microautophagic activities are oppositely affected in plants grown under NH4+ toxicity conditions. When grown under NH4+ stress conditions, macroautophagic activity was impaired in roots. Root cells accumulated autophagosomes in the cytoplasm, but showed less autophagic flux, indicating that late steps of the macroautophagy process are affected under NH4+ stress conditions. Under this scenario, we also found that the CCZ1-MON1 complex, a critical factor for vacuole delivery pathways, functions in the late step of the macroautophagic pathway in Arabidopsis. In contrast, an accumulation of tonoplast-derived vesicles was observed in vacuolar lumens of root cells of NH4+ -stressed plants, suggesting the induction of a microautophagy-like process. In this sense, some SYP22-, but mainly VAMP711-positive vesicles were observed inside vacuole in roots of NH4+ -stressed plants. Consistent with the increased tonoplast degradation and the reduced membrane flow to the vacuole due to the impaired macroautophagic flux, the vacuoles of root cells of NH4+ -stressed plants showed a simplified structure and lower tonoplast content. Taken together, this study presents evidence that postulates late steps of the macroautophagic process as a relevant physiological mechanism underlying the NH4+ sensitivity response in Arabidopsis, and additionally provides insights into the molecular tools for studying microautophagy in plants.


Asunto(s)
Compuestos de Amonio/metabolismo , Arabidopsis/metabolismo , Microautofagia , Raíces de Plantas/metabolismo , Arabidopsis/fisiología , Autofagosomas/metabolismo , Autofagosomas/fisiología , Raíces de Plantas/fisiología , Estrés Fisiológico
4.
Plant J ; 103(1): 7-20, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32369636

RESUMEN

Nitrogen (N) is a major factor for plant development and productivity. However, the application of nitrogenous fertilizers generates environmental and economic problems. To cope with the increasing global food demand, the development of rice varieties with high nitrogen use efficiency (NUE) is indispensable for reducing environmental issues and achieving sustainable agriculture. Here, we report that the concomitant activation of the rice (Oryza sativa) Ammonium transporter 1;2 (OsAMT1;2) and Glutamate synthetase 1 (OsGOGAT1) genes leads to increased tolerance to nitrogen limitation and to better ammonium uptake and N remobilization at the whole plant level. We show that the double activation of OsAMT1;2 and OsGOGAT1 increases plant performance in agriculture, providing better N grain filling without yield penalty under paddy field conditions, as well as better grain yield and N content when plants are grown under N llimitations in field conditions. Combining OsAMT1;2 and OsGOGAT1 activation provides a good breeding strategy for improving plant growth, nitrogen use efficiency and grain productivity, especially under nitrogen limitation, through the enhancement of both nitrogen uptake and assimilation.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Glutamato Sintasa/metabolismo , Nitrógeno/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Activación Enzimática , Mutación , Nitrógeno/deficiencia , Oryza/enzimología , Oryza/crecimiento & desarrollo , Plantones/metabolismo
5.
Plant Physiol ; 182(3): 1284-1296, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31941669

RESUMEN

Zinc (Zn) is an essential micronutrient for plant growth. Accordingly, Zn deficiency (-Zn) in agricultural fields is a serious problem, especially in developing regions. Autophagy, a major intracellular degradation system in eukaryotes, plays important roles in nutrient recycling under nitrogen and carbon starvation. However, the relationship between autophagy and deficiencies of other essential elements remains poorly understood, especially in plants. In this study, we focused on Zn due to the property that within cells most Zn is tightly bound to proteins, which can be targets of autophagy. We found that autophagy plays a critical role during -Zn in Arabidopsis (Arabidopsis thaliana). Autophagy-defective plants (atg mutants) failed to grow and developed accelerated chlorosis under -Zn. As expected, -Zn induced autophagy in wild-type plants, whereas in atg mutants, various organelle proteins accumulated to high levels. Additionally, the amount of free Zn2+ was lower in atg mutants than in control plants. Interestingly, -Zn symptoms in atg mutants recovered under low-light, iron-limited conditions. The levels of hydroxyl radicals in chloroplasts were elevated, and the levels of superoxide were reduced in -Zn atg mutants. These results imply that the photosynthesis-mediated Fenton-like reaction, which is responsible for the chlorotic symptom of -Zn, is accelerated in atg mutants. Together, our data indicate that autophagic degradation plays important functions in maintaining Zn pools to increase Zn bioavailability and maintain reactive oxygen species homeostasis under -Zn in plants.


Asunto(s)
Arabidopsis/metabolismo , Autofagia/fisiología , Especies Reactivas de Oxígeno/metabolismo , Zinc/deficiencia , Zinc/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925978

RESUMEN

Leaf senescence, which is the last developmental phase of plant growth, is controlled by multiple genetic and environmental factors. Leaf yellowing is a visual indicator of senescence due to the loss of the green pigment chlorophyll. During senescence, the methodical disassembly of macromolecules occurs, facilitating nutrient recycling and translocation from the sink to the source organs, which is critical for plant fitness and productivity. Leaf senescence is a complex and tightly regulated process, with coordinated actions of multiple pathways, responding to a sophisticated integration of leaf age and various environmental signals. Many studies have been carried out to understand the leaf senescence-associated molecular mechanisms including the chlorophyll breakdown, phytohormonal and transcriptional regulation, interaction with environmental signals, and associated metabolic changes. The metabolic reprogramming and nutrient recycling occurring during leaf senescence highlight the fundamental role of this developmental stage for the nutrient economy at the whole plant level. The strong impact of the senescence-associated nutrient remobilization on cereal productivity and grain quality is of interest in many breeding programs. This review summarizes our current knowledge in rice on (i) the actors of chlorophyll degradation, (ii) the identification of stay-green genotypes, (iii) the identification of transcription factors involved in the regulation of leaf senescence, (iv) the roles of leaf-senescence-associated nitrogen enzymes on plant performance, and (v) stress-induced senescence. Compiling the different advances obtained on rice leaf senescence will provide a framework for future rice breeding strategies to improve grain yield.


Asunto(s)
Envejecimiento/fisiología , Oryza/genética , Hojas de la Planta/metabolismo , Envejecimiento/genética , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Nitrógeno/metabolismo , Oryza/metabolismo , Fitomejoramiento/métodos , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo
7.
Plant Cell Physiol ; 61(7): 1309-1320, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32384162

RESUMEN

Nitrogen (N) is a major limiting factor affecting crop yield in unfertilized soil. Thus, cultivars with a high N use efficiency (NUE) and good grain protein content (GPC) are needed to fulfill the growing food demand and to reduce environmental burden. This is especially true for rice (Oryza sativa L.) that is cultivated with a high input of N fertilizer and is a primary staple food crop for more than half of the global population. Here, we report that rice asparagine synthetase 1 (OsASN1) is required for grain yield and grain protein contents under both N-sufficient (conventional paddy fields) and N-limiting conditions from analyses of knockout mutant plants. In addition, we show that overexpression (OX) of OsASN1 results in better nitrogen uptake and assimilation, and increased tolerance to N limitation at the seedling stage. Under field conditions, the OsASN1 OX rice plants produced grains with increased N and protein contents without yield reduction compared to wild-type (WT) rice. Under N-limited conditions, the OX plants displayed increased grain yield and protein content with enhanced photosynthetic activity compared to WT rice. Thus, OsASN1 can be an effective target gene for the development of rice cultivars with higher grain protein content, NUE, and grain yield under N-limiting conditions.


Asunto(s)
Aspartatoamoníaco Ligasa/metabolismo , Grano Comestible/metabolismo , Nitrógeno/deficiencia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Carácter Cuantitativo Heredable , Plantones/metabolismo
8.
J Exp Bot ; 71(10): 2854-2861, 2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32080724

RESUMEN

Autophagy is a universal mechanism that facilitates the degradation of unwanted cytoplasmic components in eukaryotic cells. In this review, we highlight recent developments in the investigation of the role of autophagy in lipid homeostasis in plants by comparison with algae, yeast, and animals. We consider the storage compartments that form the sources of lipids in plants, and the roles that autophagy plays in the synthesis of triacylglycerols and in the formation and maintenance of lipid droplets. We also consider the relationship between lipids and the biogenesis of autophagosomes, and the role of autophagy in the degradation of lipids in plants.


Asunto(s)
Autofagia , Gotas Lipídicas , Animales , Autofagosomas , Lípidos , Plantas
9.
J Exp Bot ; 71(15): 4578-4590, 2020 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31930315

RESUMEN

Nitrogen (N) is an essential nutrient that plants require for the synthesis of amino acids, proteins, and many other important metabolites. Plant metabolism and growth are consequently dependent on the amount of N that is assimilated and distributed from source leaves to developing sinks, such as fruits and seeds. The environmental stresses enhanced by climate change deeply influence seed yield and seed composition, and may disturb N use efficiency (NUE) in pants. We aimed to investigate plant responses to extreme climates with regard to NUE, N remobilization efficiency, and seed composition. By studying a collection of Arabidopsis genotypes showing a range of C:N ratios in seeds, we investigated the impact of different post-flowering growth conditions (control, heat, drought, low nitrate availability, induced senescence, and induced plant defense) on seed yield, N allocation in organs, NUE, and N remobilization efficiency. We analysed how post-flowering stresses could change seed filling and showed that post-flowering stresses change both the range of N and C concentrations and the C:N stoichiometry in seeds. Using a new trait, called delta seed composition, we measured the deviation in C:N stoichiometry of each genotype and revealed the genetic determinism of the C:N stoichiometry. Altogether, the results indicate that extreme climate impacts NUE dramatically in plants and generates different bottlenecks in N fluxes during seed filling.


Asunto(s)
Arabidopsis , Hojas de la Planta , Estrés Fisiológico , Arabidopsis/genética , Nitrógeno , Semillas
10.
J Exp Bot ; 71(20): 6471-6490, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32687580

RESUMEN

Plants have fundamental dependences on nitrogen and sulfur and frequently have to cope with chronic limitations when their supply is sub-optimal. This study aimed at characterizing the metabolomic, proteomic, and transcriptomic changes occurring in Arabidopsis leaves under chronic nitrate (Low-N) and chronic sulfate (Low-S) limitations in order to compare their effects, determine interconnections, and examine strategies of adaptation. Metabolite profiling globally revealed opposite effects of Low-S and Low-N on carbohydrate and amino acid accumulations, whilst proteomic data showed that both treatments resulted in increases in catabolic processes, stimulation of mitochondrial and cytosolic metabolism, and decreases in chloroplast metabolism. Lower abundances of ribosomal proteins and translation factors under Low-N and Low-S corresponded with growth limitation. At the transcript level, the major and specific effect of Low-N was the enhancement of expression of defence and immunity genes. The main effect of chronic Low-S was a decrease in transcripts of genes involved in cell division, DNA replication, and cytoskeleton, and an increase in the expression of autophagy genes. This was consistent with a role of target-of-rapamycin kinase in the control of plant metabolism and cell growth and division under chronic Low-S. In addition, Low-S decreased the expression of several NLP transcription factors, which are master actors in nitrate sensing. Finally, both the transcriptome and proteome data indicated that Low-S repressed glucosinolate synthesis, and that Low-N exacerbated glucosinolate degradation. This showed the importance of glucosinolate as buffering molecules for N and S management.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Nitratos/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Proteómica , Sulfatos/metabolismo
11.
New Phytol ; 223(3): 1461-1477, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31077612

RESUMEN

Autophagy is a universal mechanism in eukaryotic cells that facilitates the degradation of unwanted cell constituents and is essential for cell homeostasis and nutrient recycling. The salicylic acid-independent effects of autophagy defects on leaf metabolism were determined through large-scale proteomic and lipidomic analyses of atg5 and atg5/sid2 mutants under different nitrogen and sulfur growth conditions. Results revealed that irrespective of the growth conditions, plants carrying the atg5 mutation presented all the characteristics of endoplasmic reticulum (ER) stress. Increases in peroxisome and ER proteins involved in very long chain fatty acid synthesis and ß-oxidation indicated strong modifications of lipid metabolism. Lipidomic analyses revealed changes in the concentrations of sphingolipids, phospholipids and galactolipids. Significant accumulations of phospholipids and ceramides and changes in GIPCs (glycosyl-inositol-phosphoryl-ceramides) in atg5 mutants indicated large modifications in endomembrane-lipid and especially plasma membrane-lipid composition. Decreases in chloroplast proteins and galactolipids in atg5 under low nutrient conditions, indicated that chloroplasts were used as lipid reservoirs for ß-oxidation in atg5 mutants. In conclusion, this report demonstrates the strong impact of autophagy defect on ER stress and reveals the role of autophagy in the control of plant lipid metabolism and catabolism, influencing both lipid homeostasis and endomembrane composition.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Autofagia , Retículo Endoplásmico/metabolismo , Lipidómica , Mutación/genética , Peroxisomas/metabolismo , Proteómica , Proteínas de Arabidopsis/metabolismo , Proteína 5 Relacionada con la Autofagia/metabolismo , Cloroplastos/metabolismo , Citosol/metabolismo , Estrés del Retículo Endoplásmico , Mitocondrias/metabolismo , Modelos Biológicos , Ácido Salicílico/metabolismo
12.
Plant Cell Environ ; 42(3): 1054-1064, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30136402

RESUMEN

As sessile life forms, plants are repeatedly confronted with adverse environmental conditions, which can impair development, growth, and reproduction. During evolution, plants have established mechanisms to orchestrate the delicate balance between growth and stress tolerance, to reset cellular biochemistry once stress vanishes, or to keep a molecular memory, which enables survival of a harsher stress that may arise later. Although there are several examples of memory in diverse plants species, the molecular machinery underlying the formation, duration, and resetting of stress memories is largely unknown so far. We report here that autophagy, a central self-degradative process, assists in resetting cellular memory of heat stress (HS) in Arabidopsis thaliana. Autophagy is induced by thermopriming (moderate HS) and, intriguingly, remains high long after stress termination. We demonstrate that autophagy mediates the specific degradation of heat shock proteins at later stages of the thermorecovery phase leading to the accumulation of protein aggregates after the second HS and a compromised heat tolerance. Autophagy mutants retain heat shock proteins longer than wild type and concomitantly display improved thermomemory. Our findings reveal a novel regulatory mechanism for HS memory in plants.


Asunto(s)
Adaptación Fisiológica/fisiología , Arabidopsis/fisiología , Autofagia/fisiología , Proteínas de Arabidopsis/fisiología , Proteínas de Choque Térmico/fisiología , Respuesta al Choque Térmico/fisiología
13.
J Exp Bot ; 70(3): 859-869, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30395253

RESUMEN

Micronutrient deficiencies affect a large part of the world's population. These deficiencies are mostly due to the consumption of grains with insufficient content of iron (Fe) or zinc (Zn). Both de novo uptake by roots and recycling from leaves may provide seeds with nutrients. Autophagy, which is a conserved mechanism for nutrient recycling in eukaryotes, was shown to be involved in nitrogen remobilization to seeds. Here, we have investigated the role of this mechanism in micronutrient translocation to seeds. We found that Arabidopsis thaliana plants impaired in autophagy display defects in nutrient remobilization to seeds. In the atg5-1 mutant, which is completely defective in autophagy, the efficiency of Fe translocation from vegetative organs to seeds was severely decreased even when Fe was provided during seed formation. Combining atg5-1 with the sid2 mutation that counteracts premature senescence associated with autophagy deficiency and using 57Fe pulse labeling, we propose a two-step mechanism in which Fe taken up de novo during seed formation is first accumulated in vegetative organs and subsequently remobilized to seeds. Finally, we show that translocation of Zn and manganese (Mn) to seeds is also dependent on autophagy. Fine-tuning autophagy during seed formation opens up new possibilities to improve micronutrient remobilization to seeds.


Asunto(s)
Arabidopsis/metabolismo , Autofagia , Hierro/metabolismo , Semillas/metabolismo , Arabidopsis/genética , Autofagia/genética , Transporte Biológico , Manganeso/metabolismo , Micronutrientes/metabolismo , Zinc/metabolismo
14.
Plant J ; 91(3): 371-393, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28390103

RESUMEN

Despite a general view that asparagine synthetase generates asparagine as an amino acid for long-distance transport of nitrogen to sink organs, its role in nitrogen metabolic pathways in floral organs during seed nitrogen filling has remained undefined. We demonstrate that the onset of pollination in Arabidopsis induces selected genes for asparagine metabolism, namely ASN1 (At3g47340), GLN2 (At5g35630), GLU1 (At5g04140), AapAT2 (At5g19950), ASPGA1 (At5g08100) and ASPGB1 (At3g16150), particularly at the ovule stage (stage 0), accompanied by enhanced asparagine synthetase protein, asparagine and total amino acids. Immunolocalization confined asparagine synthetase to the vascular cells of the silique cell wall and septum, but also to the outer and inner seed integuments, demonstrating the post-phloem transport of asparagine in these cells to developing embryos. In the asn1 mutant, aberrant embryo cell divisions in upper suspensor cell layers from globular to heart stages assign a role for nitrogen in differentiating embryos within the ovary. Induction of asparagine metabolic genes by light/dark and nitrate supports fine shifts of nitrogen metabolic pathways. In transgenic Arabidopsis expressing promoterCaMV35S ::ASN1 fusion, marked metabolomics changes at stage 0, including a several-fold increase in free asparagine, are correlated to enhanced seed nitrogen. However, specific promoterNapin2S ::ASN1 expression during seed formation and a six-fold increase in asparagine toward the desiccation stage result in wild-type seed nitrogen, underlining that delayed accumulation of asparagine impairs the timing of its use by releasing amide and amino nitrogen. Transcript and metabolite profiles in floral organs match the carbon and nitrogen partitioning to generate energy via the tricarboxylic acid cycle, GABA shunt and phosphorylated serine synthetic pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Aspartatoamoníaco Ligasa/metabolismo , Nitrógeno/metabolismo , Semillas/enzimología , Semillas/metabolismo , Aminoácidos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Aspartatoamoníaco Ligasa/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Floema/enzimología , Floema/genética , Floema/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Semillas/genética
15.
Plant Cell Physiol ; 59(10): 2052-2063, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29982633

RESUMEN

SAG12 is the most widely used senescence-associated reference gene for characterizing leaf senescence, and the increase in SAG12 protein during leaf senescence is remarkable. However, the role of this cysteine protease in N remobilization and the leaf senescence process remains unclear. The role of SAG12 has been poorly investigated and the few reports dealing with this are somewhat controversial. Indeed, sag12 Arabidopsis mutants have not shown any phenotype, while OsSAG12-1 and OsSAG12-2 overexpression in rice moderates senescence progression. Therefore, this study aims at clarifying the role of the SAG12 cysteine protease during the entire plant life span and during leaf senescence. Arabidopsis thaliana plants knocked-out for the SAG12 gene (sag12) did not exhibit any special phenotypic traits when grown under optimal nitrogen supply (HN), suggesting that other cysteine proteases could provide compensatory effects. Moreover, for the first time, this study shows that aspartate protease activity is significantly increased in sag12. Among the putative aspartate proteases involved, a CND41-like aspartate protease has been identified. Under low nitrogen (LN) availability, when inducible proteolytic systems are not sufficient to cope with SAG12 depletion, a decrease in yield is observed. Altogether, these results show that SAG12 (and perhaps also aspartate proteases) could be involved in RuBisCO degradation during the leaf senescence associated with seed filling.


Asunto(s)
Proteasas de Cisteína/metabolismo , Nitrógeno/metabolismo , Oryza/metabolismo , Semillas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteasas de Cisteína/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Semillas/genética
16.
New Phytol ; 217(1): 35-53, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29120059

RESUMEN

Contents Summary 35 I. Introduction 35 II. Nitrogen acquisition and assimilation 36 III. Root-to-shoot transport of nitrogen 38 IV. Nitrogen storage pools in vegetative tissues 39 V. Nitrogen transport from source leaf to sink 40 VI. Nitrogen import into sinks 42 VII. Relationship between source and sink nitrogen transport processes and metabolism 43 VIII. Regulation of nitrogen transport 43 IX. Strategies for crop improvement 44 X. Conclusions 46 Acknowledgements 47 References 47 SUMMARY: Nitrogen is an essential nutrient for plant growth. World-wide, large quantities of nitrogenous fertilizer are applied to ensure maximum crop productivity. However, nitrogen fertilizer application is expensive and negatively affects the environment, and subsequently human health. A strategy to address this problem is the development of crops that are efficient in acquiring and using nitrogen and that can achieve high seed yields with reduced nitrogen input. This review integrates the current knowledge regarding inorganic and organic nitrogen management at the whole-plant level, spanning from nitrogen uptake to remobilization and utilization in source and sink organs. Plant partitioning and transient storage of inorganic and organic nitrogen forms are evaluated, as is how they affect nitrogen availability, metabolism and mobilization. Essential functions of nitrogen transporters in source and sink organs and their importance in regulating nitrogen movement in support of metabolism, and vegetative and reproductive growth are assessed. Finally, we discuss recent advances in plant engineering, demonstrating that nitrogen transporters are effective targets to improve crop productivity and nitrogen use efficiency. While inorganic and organic nitrogen transporters were examined separately in these studies, they provide valuable clues about how to successfully combine approaches for future crop engineering.


Asunto(s)
Productos Agrícolas/metabolismo , Nitrógeno/metabolismo , Transporte Biológico , Productos Agrícolas/crecimiento & desarrollo , Proteínas de Transporte de Membrana/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo
17.
J Exp Bot ; 69(4): 891-903, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-28992054

RESUMEN

Leaf senescence is a long developmental process important for nutrient management and for source to sink remobilization. Constituents of the mesophyll cells are progressively degraded to provide nutrients to the rest of the plant. Up to now, studies on leaf senescence have not paid much attention to the role of the different leaf tissues. In the present study, we dissected leaf laminae from the midvein to perform metabolite profiling. The laminae mesophyll cells are the source of nutrients, and in C3 plants they contain Rubisco as the most important nitrogen storage pool. Veins, rich in vasculature, are the place where all the nutrients are translocated, and sometimes interconverted, before being exported through the phloem or the xylem. The different metabolic changes we observed in laminae and midvein with ageing support the idea that the senescence programme in these two tissues is different. Important accumulations of metabolites in the midvein suggest that nutrient translocations from source leaves to sinks are mainly controlled at this level. Carbon and nitrogen long-distance molecules such as fructose, glucose, aspartate, and asparagine were more abundant in the midvein than in laminae. In contrast, sucrose, glutamate, and aspartate were more abundant in laminae. The concentrations of tricarboxylic acid (TCA) compounds were also lower in the midvein than in laminae. Since nitrogen remobilization increased under low nitrate supply, plants were grown under two nitrate concentrations. The results revealed that the senescence-related differences were mostly similar under low and high nitrate conditions except for some pathways such as the TCA cycle.


Asunto(s)
Brassica napus/metabolismo , Metaboloma , Nitratos/metabolismo , Hojas de la Planta/metabolismo , Envejecimiento , Brassica napus/crecimiento & desarrollo , Metabolómica , Hojas de la Planta/crecimiento & desarrollo
18.
J Exp Bot ; 69(6): 1403-1414, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29378007

RESUMEN

Autophagy is essential for nutrient recycling and plays a fundamental role in seed production and grain filling in plants. Autophagy participates in nitrogen remobilization at the whole-plant level, and the seeds of autophagy mutants present abnormal C and N contents relative to wild-type (WT) plants. It is well known that autophagy (ATG) genes are induced in leaves during senescence; however, expression of such genes in seeds has not yet been reported. In this study we show that most of the ATG genes are induced during seed maturation in Arabidopsis siliques. Promoter-ATG8f::UIDA and promoter-ATG8f::GFP fusions showed the strong expression of ATG8f in the phloem companion cells of pericarps and the funiculus, and in the embryo. Expression was especially strong at the late stages of development. The presence of many GFP-ATG8 pre-autophagosomal structures and autophagosomes confirmed the presence of autophagic activity in WT seed embryos. Seeds of atg5 and WT plants grown under low- or high-nitrate conditions were analysed. Nitrate-independent phenotypes were found with higher seed abortion in atg5 and early browing, higher total protein concentrations in the viable seeds of this mutant as compared to the WT. The higher total protein accumulation in atg5 viable seeds was significant from early developmental stages onwards. In addition, relatively low and early accumulation of 12S globulins were found in atg5 seeds. These features led us to the conclusion that atg5 seed development is accelerated and that the protein storage deposition pathway is somehow abnormal or incomplete.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Autofagia/fisiología , Regulación de la Expresión Génica de las Plantas , Semillas/metabolismo
19.
J Exp Bot ; 69(18): 4379-4393, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-29873769

RESUMEN

Glutamine synthetase (GS) is central for ammonium assimilation and consists of cytosolic (GS1) and chloroplastic (GS2) isoenzymes. During plant ageing, GS2 protein decreases due to chloroplast degradation, and GS1 activity increases to support glutamine biosynthesis and N remobilization from senescing leaves. The role of the different Arabidopsis GS1 isoforms in nitrogen remobilization was examined using 15N tracing experiments. Only the gln1;1-gln1;2-gln1;3 triple-mutation affecting the three GLN1;1, GLN1;2, and GLN1;3 genes significantly reduced N remobilization, total seed yield, individual seed weight, harvest index, and vegetative biomass. The triple-mutant accumulated a large amount of ammonium that could not be assimilated by GS1. Alternative ammonium assimilation through asparagine biosynthesis was increased and was related to higher ASN2 asparagine synthetase transcript levels. The GS2 transcript, protein, and activity levels were also increased to compensate for the lack of GS1-related glutamine biosynthesis. Localization of the different GLN1 genes showed that they were all expressed in the phloem companion cells but in veins of different order. Our results demonstrate that glutamine biosynthesis for N-remobilization occurs in veins of all orders (major and minor) in leaves, it is mainly catalysed by the three major GS1 isoforms (GLN1;1, GLN1;2, and GLN1;3), and it is alternatively supported by AS2 in the veins and GS2 in the mesophyll cells.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glutamato-Amoníaco Ligasa/genética , Nitrógeno/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Hojas de la Planta/metabolismo , Semillas/crecimiento & desarrollo
20.
J Exp Bot ; 69(6): 1369-1385, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29281085

RESUMEN

Autophagy is essential for protein degradation, nutrient recycling, and nitrogen remobilization. Autophagy is induced during leaf ageing and in response to nitrogen starvation, and is known to play a fundamental role in nutrient recycling for remobilization and seed filling. Accordingly, ageing leaves of Arabidopsis autophagy mutants (atg) have been shown to over-accumulate proteins and peptides, possibly because of a reduced protein degradation capacity. Surprisingly, atg leaves also displayed higher protease activities. The work reported here aimed at identifying the nature of the proteases and protease activities that accumulated differentially (higher or lower) in the atg mutants. Protease identification was performed using shotgun LC-MS/MS proteome analyses and activity-based protein profiling (ABPP). The results showed that the chloroplast FTSH (FILAMENTATION TEMPERATURE SENSITIVE H) and DEG (DEGRADATION OF PERIPLASMIC PROTEINS) proteases and several extracellular serine proteases [subtilases (SBTs) and serine carboxypeptidase-like (SCPL) proteases] were less abundant in atg5 mutants. By contrast, proteasome-related proteins and cytosolic or vacuole cysteine proteases were more abundant in atg5 mutants. Rubisco degradation assays and ABPP showed that the activities of proteasome and papain-like cysteine protease were increased in atg5 mutants. Whether these proteases play a back-up role in nutrient recycling and remobilization in atg mutants or act to promote cell death is discussed in relation to their accumulation patterns in the atg5 mutant compared with the salicylic acid-depleted atg5/sid2 double-mutant, and in low nitrate compared with high nitrate conditions. Several of the proteins identified are indeed known as senescence- and stress-related proteases or as spontaneous cell-death triggering factors.


Asunto(s)
Arabidopsis/fisiología , Autofagia/genética , Proteasas de Cisteína/genética , Arabidopsis/genética , Proteasas de Cisteína/metabolismo , Mutación , Papaína/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA