Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Dairy Sci ; 104(7): 7583-7603, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33865588

RESUMEN

Objectives were to evaluate the effect of feeding rumen-protected methionine (RPM) in pre- and postpartum total mix ration (TMR) on lactation performance and plasma AA concentrations in dairy cows. A total of 470 multiparous Holstein cows [235 cows at University of Wisconsin (UW) and 235 cows at Cornell University (CU)] were enrolled approximately 4 wk before parturition, housed in close-up dry cow and replicated lactation pens. Pens were randomly assigned to treatment diets (pre- and postpartum, respectively): UW control (CON) diet = 2.30 and 2.09% of Met as percentage of metabolizable protein (MP) and RPM diet = 2.83 and 2.58% of Met as MP; CU CON = 2.22 and 2.19% of Met as percentage of MP, and CU RPM = 2.85 and 2.65% of Met as percentage of MP. Treatments were evaluated until 112 ± 3 d in milk (DIM). Milk yield was recorded daily. Milk samples were collected at wk 1 and 2 of lactation, and then every other week, and analyzed for milk composition. For lactation pens, dry matter intake (DMI) was recorded daily. Body weight and body condition score were determined from 4 ± 3 DIM and parturition until 39 ± 3 and 49 DIM, respectively. Plasma AA concentrations were evaluated within 3 h after feeding during the periparturient period [d -7 (±4), 0, 7 (±1), 14 (±1), and 21 (±1); n = 225]. In addition, plasma AA concentrations were evaluated (every 3 h for 24 h) after feeding in cows at 76 ± 8 DIM (n = 16) and within 3 h after feeding in cows at 80 ± 3 DIM (n = 72). The RPM treatment had no effect on DMI (27.9 vs. 28.0 kg/d) or milk yield (48.7 vs. 49.2 kg/d) for RPM and CON, respectively. Cows fed the RPM treatment had increased milk protein concentration (3.07 vs. 2.95%) and yield (1.48 vs. 1.43 kg/d), and milk fat concentration (3.87 vs. 3.77%), although milk fat yield did not differ. Plasma Met concentrations tended to be greater for cows fed RPM at 7 d before parturition (25.9 vs. 22.9 µM), did not differ at parturition (22.0 vs. 20.4 µM), and were increased on d 7 (31.0 vs. 21.2 µM) and remained greater with consistent concentrations until d 21 postpartum (d 14: 30.5 vs. 19.0 µM; d 21: 31.0 vs. 17.8 µM). However, feeding RPM decreased Leu, Val, Asn, and Ser (d 7, 14, and 21) and Tyr (d 14). At a later stage in lactation, plasma Met was increased for RPM cows (34.4 vs. 16.7 µM) consistently throughout the day, with no changes in other AA. Substantial variation was detected for plasma Met concentration (range: RPM = 8.9-63.3 µM; CON = 7.8-28.8 µM) among cows [coefficient of variation (CV) > 28%] and within cow during the day (CV: 10.5-27.1%). In conclusion, feeding RPM increased plasma Met concentration and improved lactation performance via increased milk protein production.


Asunto(s)
Metionina , Rumen , Animales , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Lactancia , Leche , Periodo Posparto
2.
J Dairy Sci ; 104(10): 11210-11225, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34304872

RESUMEN

Our primary objective was to evaluate the effect of feeding rumen-protected Met (RPM) in the pre- and postpartum total mixed ration (TMR) on pregnancy per artificial insemination (AI) and pregnancy loss in multiparous Holstein cows. We also evaluated multiple secondary reproductive physiological outcomes before and after AI, including uterine health, ovarian cyclicity, response to synchronization of ovulation, and markers of embryo development and size. A total of 470 multiparous Holstein cows [235 at the University of Wisconsin (UW) and 235 at Cornell University (CU)] were used for this experiment. Experimental treatment diets were applied at the pen level (2 and 4 close-up pens at CU and UW, respectively, and 12 and 6 postfresh pens at CU and UW, respectively); thus, pen was the experimental unit, and cow was the observational unit. Cows were enrolled and randomly assigned to be fed the experimental treatment diets at approximately 4 wk before parturition until 67 d of gestation [147 d in milk (DIM)] after their first service. Close-up dry cow and replicated lactation pens were randomly assigned to treatment diets: RPM, prepartum = 2.83% (UW) and 2.85% (CU), postpartum = 2.58% (UW) and 2.65% (CU); and control (CON), prepartum = 2.30% (UW) and 2.22% (CU), postpartum = 2.09% (UW) and 2.19% (CU; Met as percentage of metabolizable protein). Vaginal discharge and uterine cytology (percentage of polymorphonuclear leucocytes) were evaluated at 35 ± 3 DIM. Cows received timed AI (TAI) at 80 ± 3 DIM after synchronization of ovulation with the Double-Ovsynch protocol. Ovarian cyclicity status, response to synchronization of ovulation, and luteal function were determined by measuring circulating concentrations of progesterone at 35 and 49 ± 3 DIM, 48 and 24 h before TAI, and 8, 18, 22, 25, and 29 d after TAI. Interferon-stimulated gene expression in white blood cells were compared on 18 d after TAI (CU only) and pregnancy-specific protein B concentrations at 22, 25, 29, 32, and 67 d after TAI. Pregnancy status was determined using pregnancy-specific protein B at 25 and 29 d after TAI, and by transrectal ultrasonography at 32, 39, and 67 d after TAI. Embryo and amniotic vesicle size were determined at 32 and 39 d after TAI. Pregnancy per AI (25 d: 64.7 vs. 64.0%, 32 d: 54.3 vs. 55.1% for CON and RPM, respectively) and pregnancy loss (25 to 67 d: 22.6 vs. 19.2% for CON and RPM, respectively) for synchronized cows did not differ. The proportion of cows with purulent vaginal discharge (CON = 7.7 vs. RPM = 4.6%) and cytological endometritis (CON = 20.8 vs. RPM = 23.6%) did not differ. Cyclicity status, ovarian responses to the synchronization protocol, and synchronization rate also did not differ. In addition, fold change for interferon-stimulated genes, concentrations of pregnancy-specific protein B, and embryo size were not affected by treatments. In conclusion, feeding RPM in the pre- and postpartum TMR at the amounts used in this experiment did not affect uterine health, cyclicity, embryo development, or reproductive efficiency in dairy cows.


Asunto(s)
Sincronización del Estro , Rumen , Animales , Bovinos , Dinoprost , Femenino , Hormona Liberadora de Gonadotropina , Inseminación Artificial/veterinaria , Lactancia , Metionina , Periodo Posparto , Embarazo , Progesterona
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA