Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cancer Metastasis Rev ; 43(1): 197-228, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38329598

RESUMEN

Cancer is a complex disease displaying a variety of cell states and phenotypes. This diversity, known as cancer cell plasticity, confers cancer cells the ability to change in response to their environment, leading to increased tumor diversity and drug resistance. This review explores the intricate landscape of cancer cell plasticity, offering a deep dive into the cellular, molecular, and genetic mechanisms that underlie this phenomenon. Cancer cell plasticity is intertwined with processes such as epithelial-mesenchymal transition and the acquisition of stem cell-like features. These processes are pivotal in the development and progression of tumors, contributing to the multifaceted nature of cancer and the challenges associated with its treatment. Despite significant advancements in targeted therapies, cancer cell adaptability and subsequent therapy-induced resistance remain persistent obstacles in achieving consistent, successful cancer treatment outcomes. Our review delves into the array of mechanisms cancer cells exploit to maintain plasticity, including epigenetic modifications, alterations in signaling pathways, and environmental interactions. We discuss strategies to counteract cancer cell plasticity, such as targeting specific cellular pathways and employing combination therapies. These strategies promise to enhance the efficacy of cancer treatments and mitigate therapy resistance. In conclusion, this review offers a holistic, detailed exploration of cancer cell plasticity, aiming to bolster the understanding and approach toward tackling the challenges posed by tumor heterogeneity and drug resistance. As articulated in this review, the delineation of cellular, molecular, and genetic mechanisms underlying tumor heterogeneity and drug resistance seeks to contribute substantially to the progress in cancer therapeutics and the advancement of precision medicine, ultimately enhancing the prospects for effective cancer treatment and patient outcomes.


Asunto(s)
Plasticidad de la Célula , Neoplasias , Humanos , Plasticidad de la Célula/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/genética , Transducción de Señal
2.
Semin Cancer Biol ; 86(Pt 3): 107-121, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35931301

RESUMEN

Since the introduction of the cancer stem cell (CSC) paradigm, significant advances have been made in understanding the functional and biological plasticity of these elusive components in malignancies. Endowed with self-renewing abilities and multilineage differentiation potential, CSCs have emerged as cellular drivers of virtually all facets of tumor biology, including metastasis, tumor recurrence/relapse, and drug resistance. The functional and biological characteristics of CSCs, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation are regulated by an array of extracellular factors, signaling pathways, and pluripotent transcriptional factors. Besides the well-characterized regulatory role of transcription factors OCT4, SOX2, NANOG, KLF4, and MYC in CSCs, evidence for the central role of Forkhead box transcription factor FOXM1 in the establishment, maintenance, and functions of CSCs is accumulating. Conventionally identified as a master regulator of the cell cycle, a comprehensive understanding of this molecule has revealed its multifarious oncogenic potential and uncovered its role in angiogenesis, invasion, migration, self-renewal, and drug resistance. This review compiles the large body of literature that has accumulated in recent years that provides evidence for the mechanisms by which FOXM1 expression promotes stemness in glioblastoma, breast, colon, ovarian, lung, hepatic, and pancreatic carcinomas. We have also compiled the data showing the association of stem cell mediators with FOXM1 using TCGA mRNA expression data. Further, the prognostic importance of FOXM1 and other stem cell markers is presented. The delineation of FOXM1-mediated regulation of CSCs can aid in the development of molecularly targeted pharmacological approaches directed at the selective eradication of CSCs in several human malignancies.


Asunto(s)
Glioblastoma , Recurrencia Local de Neoplasia , Humanos , Células Madre Neoplásicas , Transducción de Señal , Factores de Transcripción Forkhead , Proteína Forkhead Box M1/genética
3.
J Transl Med ; 21(1): 449, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420216

RESUMEN

Traditional cancer treatments use nonspecific drugs and monoclonal antibodies to target tumor cells. Chimeric antigen receptor (CAR)-T cell therapy, however, leverages the immune system's T-cells to recognize and attack tumor cells. T-cells are isolated from patients and modified to target tumor-associated antigens. CAR-T therapy has achieved FDA approval for treating blood cancers like B-cell acute lymphoblastic leukemia, large B-cell lymphoma, and multiple myeloma by targeting CD-19 and B-cell maturation antigens. Bi-specific chimeric antigen receptors may contribute to mitigating tumor antigen escape, but their efficacy could be limited in cases where certain tumor cells do not express the targeted antigens. Despite success in blood cancers, CAR-T technology faces challenges in solid tumors, including lack of reliable tumor-associated antigens, hypoxic cores, immunosuppressive tumor environments, enhanced reactive oxygen species, and decreased T-cell infiltration. To overcome these challenges, current research aims to identify reliable tumor-associated antigens and develop cost-effective, tumor microenvironment-specific CAR-T cells. This review covers the evolution of CAR-T therapy against various tumors, including hematological and solid tumors, highlights challenges faced by CAR-T cell therapy, and suggests strategies to overcome these obstacles, such as utilizing single-cell RNA sequencing and artificial intelligence to optimize clinical-grade CAR-T cells.


Asunto(s)
Neoplasias Hematológicas , Mieloma Múltiple , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inteligencia Artificial , Neoplasias/terapia , Inmunoterapia Adoptiva , Antígenos de Neoplasias , Microambiente Tumoral , Tratamiento Basado en Trasplante de Células y Tejidos
4.
J Transl Med ; 21(1): 286, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37118828

RESUMEN

BACKGROUND: Osteosarcoma is a type of bone cancer that predominantly affects young individuals, including children and adolescents. The disease progresses through heterogeneous genetic alterations, and patients often develop pulmonary metastases even after the primary tumors have been surgically removed. Ubiquitin-specific peptidases (USPs) regulate several critical cellular processes, such as cell cycle progression, transcriptional activation, and signal transduction. Various studies have revealed the significance of USP37 in the regulation of replication stress and oncogenesis. METHODS: In this study, the Cancer Genome Atlas (TCGA) database was analyzed to investigate USP37 expression. RNA sequencing was utilized to assess the impact of USP37 overexpression and depletion on gene expression in osteosarcoma cells. Various molecular assays, including colony formation, immunofluorescence, immunoprecipitation, and DNA replication restart, were employed to examine the physical interaction between USP37 and PCNA, as well as its physiological effects in osteosarcoma cells. Additionally, molecular docking studies were conducted to gain insight into the nature of the interaction between USP37 and PCNA. Furthermore, immunohistochemistry was performed on archived tissue blocks from osteosarcoma patients to establish a correlation between USP37 and PCNA expression. RESULTS: Analysis of the TCGA database revealed that increased expression of USP37 was linked to decreased progression-free survival (PFS) in osteosarcoma patients. Next-generation sequencing analysis of osteosarcoma cells demonstrated that overexpression or knockdown of USP37 led to the expression of different sets of genes. USP37 overexpression provided a survival advantage, while its depletion heightened sensitivity to replication stress in osteosarcoma cells. USP37 was found to physically interact with PCNA, and molecular docking studies indicated that the interaction occurs through unique residues. In response to genotoxic stress, cells that overexpressed USP37 resolved DNA damage foci more quickly than control cells or cells in which USP37 was depleted. The expression of USP37 varied in archived osteosarcoma tissues, with intermediate expression seen in 52% of cases in the cohort examined. CONCLUSION: The results of this investigation propose that USP37 plays a vital role in promoting replication stress tolerance in osteosarcoma cells. The interaction between USP37 and PCNA is involved in the regulation of replication stress, and disrupting it could potentially trigger synthetic lethality in osteosarcoma. This study has expanded our knowledge of the mechanism through which USP37 regulates replication stress, and its potential as a therapeutic target in osteosarcoma merits additional exploration.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Niño , Humanos , Adolescente , Antígeno Nuclear de Célula en Proliferación , Endopeptidasas/genética , Endopeptidasas/metabolismo , Simulación del Acoplamiento Molecular , Proteasas Ubiquitina-Específicas , Osteosarcoma/genética , Neoplasias Óseas/genética
5.
BMC Cancer ; 23(1): 874, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37718447

RESUMEN

BACKGROUND: Telomeres are repetitive DNA sequences located at the ends of chromosomes, playing a vital role in maintaining chromosomal integrity and stability. Dysregulation of telomeres has been implicated in the development of various cancers, including non-small cell lung cancer (NSCLC), which is the most common type of lung cancer. Genetic variations within telomere maintenance genes may influence the risk of developing NSCLC. The present study aimed to evaluate the genetic associations of select variants within telomere maintenance genes in a population from Jammu and Kashmir, North India, and to investigate the relationship between telomere length and NSCLC risk. METHODS: We employed the cost-effective and high-throughput MassARRAY MALDI-TOF platform to assess the genetic associations of select variants within telomere maintenance genes in a population from Jammu and Kashmir, North India. Additionally, we used TaqMan genotyping to validate our results. Furthermore, we investigated telomere length variation and its relation to NSCLC risk in the same population using dual-labeled fluorescence-based qPCR. RESULTS: Our findings revealed significant associations of TERT rs10069690 and POT1 rs10228682 with NSCLC risk (adjusted p-values = 0.019 and 0.002, respectively), while TERF2 rs251796 and rs2975843 showed no significant associations. The TaqMan genotyping validation further substantiated the associations of TERT rs10069690 and rs2242652 with NSCLC risk (adjusted p-values = 0.02 and 0.003, respectively). Our results also demonstrated significantly shorter telomere lengths in NSCLC patients compared to controls (p = 0.0004). CONCLUSION: This study highlights the crucial interplay between genetic variation in telomere maintenance genes, telomere attrition, and NSCLC risk in the Jammu and Kashmir population of North India. Our findings suggest that TERT and POT1 gene variants, along with telomere length, may serve as potential biomarkers and therapeutic targets for NSCLC in this population. Further research is warranted to elucidate the underlying mechanisms and to explore the potential clinical applications of these findings.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/genética , Telómero/genética , India/epidemiología , Espectrometría de Masas
6.
Mol Psychiatry ; 27(5): 2380-2392, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35296811

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental impairment characterized by deficits in social interaction skills, impaired communication, and repetitive and restricted behaviors that are thought to be due to altered neurotransmission processes. The amino acid glutamate is an essential excitatory neurotransmitter in the human brain that regulates cognitive functions such as learning and memory, which are usually impaired in ASD. Over the last several years, increasing evidence from genetics, neuroimaging, protein expression, and animal model studies supporting the notion of altered glutamate metabolism has heightened the interest in evaluating glutamatergic dysfunction in ASD. Numerous pharmacological, behavioral, and imaging studies have demonstrated the imbalance in excitatory and inhibitory neurotransmitters, thus revealing the involvement of the glutamatergic system in ASD pathology. Here, we review the effects of genetic alterations on glutamate and its receptors in ASD and the role of non-invasive imaging modalities in detecting these changes. We also highlight the potential therapeutic targets associated with impaired glutamatergic pathways.


Asunto(s)
Trastorno del Espectro Autista , Animales , Trastorno del Espectro Autista/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ácido Glutámico/metabolismo , Transmisión Sináptica
7.
Mol Cancer ; 21(1): 79, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35303879

RESUMEN

Over the past decade, invasive techniques for diagnosing and monitoring cancers are slowly being replaced by non-invasive methods such as liquid biopsy. Liquid biopsies have drastically revolutionized the field of clinical oncology, offering ease in tumor sampling, continuous monitoring by repeated sampling, devising personalized therapeutic regimens, and screening for therapeutic resistance. Liquid biopsies consist of isolating tumor-derived entities like circulating tumor cells, circulating tumor DNA, tumor extracellular vesicles, etc., present in the body fluids of patients with cancer, followed by an analysis of genomic and proteomic data contained within them. Methods for isolation and analysis of liquid biopsies have rapidly evolved over the past few years as described in the review, thus providing greater details about tumor characteristics such as tumor progression, tumor staging, heterogeneity, gene mutations, and clonal evolution, etc. Liquid biopsies from cancer patients have opened up newer avenues in detection and continuous monitoring, treatment based on precision medicine, and screening of markers for therapeutic resistance. Though the technology of liquid biopsies is still evolving, its non-invasive nature promises to open new eras in clinical oncology. The purpose of this review is to provide an overview of the current methodologies involved in liquid biopsies and their application in isolating tumor markers for detection, prognosis, and monitoring cancer treatment outcomes.


Asunto(s)
Células Neoplásicas Circulantes , Proteómica , Biomarcadores de Tumor/genética , Humanos , Biopsia Líquida/métodos , Células Neoplásicas Circulantes/patología , Pronóstico
8.
Am J Hum Genet ; 105(5): 959-973, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31668701

RESUMEN

Unlike many cancers, the pattern of tumor evolution in papillary thyroid cancer (PTC) and its potential role in relapse have not been elucidated. In this study, multi-region whole-exome sequencing (WES) was performed on early-stage PTC tumors (n = 257 tumor regions) from 79 individuals, including 17 who had developed relapse, to understand the temporal and spatial framework within which subclonal mutations catalyze tumor evolution and its potential clinical relevance. Paired primary-relapse tumor tissues were also available for a subset of individuals. The resulting catalog of variants was analyzed to explore evolutionary histories, define clonal and subclonal events, and assess the relationship between intra-tumor heterogeneity and relapse-free survival. The multi-region WES approach was key in correctly classifying subclonal mutations, 40% of which would have otherwise been erroneously considered clonal. We observed both linear and branching evolution patterns in our PTC cohort. A higher burden of subclonal mutations was significantly associated with increased risk of relapse. We conclude that relapse in PTC, while generally rare, does not follow a predictable evolutionary path and that subclonal mutation burden may serve as a prognostic factor. Larger studies utilizing multi-region sequencing in relapsed PTC case subjects with matching primary tissues are needed to confirm these observations.


Asunto(s)
Mutación/genética , Cáncer Papilar Tiroideo/genética , Adolescente , Adulto , Evolución Molecular , Exoma/genética , Femenino , Humanos , Masculino , Recurrencia Local de Neoplasia/genética , Secuenciación del Exoma/métodos
9.
J Transl Med ; 20(1): 534, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36401282

RESUMEN

Gene editing has great potential in treating diseases caused by well-characterized molecular alterations. The introduction of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-based gene-editing tools has substantially improved the precision and efficiency of gene editing. The CRISPR/Cas9 system offers several advantages over the existing gene-editing approaches, such as its ability to target practically any genomic sequence, enabling the rapid development and deployment of novel CRISPR-mediated knock-out/knock-in methods. CRISPR/Cas9 has been widely used to develop cancer models, validate essential genes as druggable targets, study drug-resistance mechanisms, explore gene non-coding areas, and develop biomarkers. CRISPR gene editing can create more-effective chimeric antigen receptor (CAR)-T cells that are durable, cost-effective, and more readily available. However, further research is needed to define the CRISPR/Cas9 system's pros and cons, establish best practices, and determine social and ethical implications. This review summarizes recent CRISPR/Cas9 developments, particularly in cancer research and immunotherapy, and the potential of CRISPR/Cas9-based screening in developing cancer precision medicine and engineering models for targeted cancer therapy, highlighting the existing challenges and future directions. Lastly, we highlight the role of artificial intelligence in refining the CRISPR system's on-target and off-target effects, a critical factor for the broader application in cancer therapeutics.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias , Humanos , Sistemas CRISPR-Cas/genética , Inteligencia Artificial , Edición Génica/métodos , Inmunoterapia , Neoplasias/genética , Neoplasias/terapia
10.
Hered Cancer Clin Pract ; 19(1): 49, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34906214

RESUMEN

BACKGROUND: The data on prevalence and clinical relevance of TP53 germline mutations in early onset Middle-Eastern breast cancer (BC) is limited. METHODS: We determined TP53 germline mutations in a cohort of 464 early onset BC patients from Saudi Arabia using capture sequencing based next generation sequencing. RESULTS: Germline TP53 pathogenic mutations were found in 1.5% (7/464) of early onset Saudi BC patients. A total of six pathogenic missense mutations, one stop gain mutation and two variants of uncertain significance (VUS) were detected in our cohort. No TP53 pathogenic mutations were detected among 463 healthy controls. TP53 mutations carriers were significantly more likely to have bilateral breast cancer (p = 0.0008). At median follow-up of 41 months, TP53 mutations were an unfavorable factor for overall survival in univariate analysis. All the patients carrying TP53 mutations were negative for BRCA1 and BRCA2 mutations. Majority of patients (85.7%; 6/7) carrying TP53 mutation had no family history suggestive of Li-Fraumeni Syndrome (LFS) or personal history of multiple LFS related tumors. Only one patient had a positive family history suggestive of LFS. CONCLUSIONS: TP53 germline mutation screening detects a clinically meaningful risk of early onset BC from this ethnicity and should be considered in all early onset BC regardless of the family history of cancer, especially in young patients that are negative for BRCA mutations.

11.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925575

RESUMEN

Head and neck squamous cell carcinomas (HNSCCs) are aggressive diseases with a dismal patient prognosis. Despite significant advances in treatment modalities, the five-year survival rate in patients with HNSCC has improved marginally and therefore warrants a comprehensive understanding of the HNSCC biology. Alterations in the cellular and non-cellular components of the HNSCC tumor micro-environment (TME) play a critical role in regulating many hallmarks of cancer development including evasion of apoptosis, activation of invasion, metastasis, angiogenesis, response to therapy, immune escape mechanisms, deregulation of energetics, and therefore the development of an overall aggressive HNSCC phenotype. Cytokines and chemokines are small secretory proteins produced by neoplastic or stromal cells, controlling complex and dynamic cell-cell interactions in the TME to regulate many cancer hallmarks. This review summarizes the current understanding of the complex cytokine/chemokine networks in the HNSCC TME, their role in activating diverse signaling pathways and promoting tumor progression, metastasis, and therapeutic resistance development.


Asunto(s)
Carcinoma de Células Escamosas/inmunología , Neoplasias de Cabeza y Cuello/inmunología , Microambiente Tumoral/inmunología , Apoptosis , Carcinoma de Células Escamosas/metabolismo , Quimiocinas/inmunología , Citocinas/inmunología , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Pronóstico , Transducción de Señal , Microambiente Tumoral/fisiología
12.
Br J Cancer ; 122(8): 1219-1230, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32099096

RESUMEN

BACKGROUND: High-grade serous ovarian carcinoma (HGSOC) is the most frequent type of ovarian carcinoma, associated with poor clinical outcome and metastatic disease. Although metastatic processes are becoming more understandable, the genomic landscape and metastatic progression in HGSOC has not been elucidated. METHODS: Multi-region whole-exome sequencing was performed on HGSOC primary tumours and their metastases (n = 33 tumour regions) from six patients. The resulting somatic variants were analysed to delineate tumour evolution and metastatic dissemination, and to compare the repertoire of events between primary HGSOC and metastasis. RESULTS: All cases presented branching evolution patterns in primary HGSOC, with three cases further showing parallel evolution in which different mutations on separate branches of a phylogenetic tree converge on the same gene. Furthermore, linear metastatic progression was observed in 67% of cases with late dissemination, in which the metastatic tumour mostly acquires the same mutational process active in primary tumour, and parallel metastatic progression, with early dissemination in the remaining 33.3% of cases. Metastatic-specific SNVs were further confirmed as late dissemination events. We also found the involvement of metastatic-specific driver events in the Wnt/ß-catenin pathway, and identified potential clinically actionable events in individual patients of the metastatic HGSOC cohort. CONCLUSIONS: This study provides deeper insights into clonal evolution and mutational processes that can pave the way to new therapeutic targets.


Asunto(s)
Cistadenocarcinoma Seroso/genética , Heterogeneidad Genética , Neoplasias Ováricas/genética , Adulto , Evolución Clonal , Estudios de Cohortes , Cistadenocarcinoma Seroso/patología , Femenino , Genes p53 , Humanos , Persona de Mediana Edad , Metástasis de la Neoplasia , Neoplasias Ováricas/patología , Secuenciación del Exoma
13.
Hum Mutat ; 40(6): 729-733, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30825404

RESUMEN

Germline mutations in breast cancer susceptibility gene 1 and 2 have previously been estimated to contribute to 13-18% of all epithelial ovarian cancer (EOC). To characterize the prevalence and effect of BRCA1 and BRCA2 mutations in Middle Eastern EOC patients, BRCA mutation screening was performed in 407 unselected ovarian cancer patients using targeted capture and/or Sanger sequencing. A total of 19 different pathogenic variants (PVs) were identified in 50 (12.3%) women. Nine PVs were recurrent accounting for 80% of cases with PVs (40/50) in the entire cohort. Founder mutation analysis revealed only two mutations (c.4136_4137delCT and c.1140dupG) sharing the same haplotypes thus representing founder mutations in the Middle Eastern population. Identification of the mutation spectrum, prevalence, and founder effect in Middle Eastern population facilitates genetic counseling, risk assessment, and development of a cost-effective screening strategy.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Carcinoma Epitelial de Ovario/genética , Mutación , Neoplasias Ováricas/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Carcinoma Epitelial de Ovario/metabolismo , Femenino , Efecto Fundador , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Haplotipos , Humanos , Medio Oriente/epidemiología , Neoplasias Ováricas/metabolismo , Prevalencia , Análisis de Secuencia de ADN
14.
Am J Hum Genet ; 98(6): 1170-1180, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27236916

RESUMEN

Papillary thyroid carcinoma (PTC) has a wide geographic variation in incidence; it is most common in Saudi Arabia, where it is only second to breast cancer as the most common cancer among females. Genomic profiling of PTC from Saudi Arabia has not been attempted previously. We performed whole-exome sequencing of 101 PTC samples and the corresponding genomic DNA to identify genes with recurrent somatic mutations, then sequenced these genes by using a next-generation gene-panel approach in an additional 785 samples. In addition to BRAF, N-RAS, and H-RAS, which have previously been shown to be recurrently mutated in PTC, our analysis highlights additional genes, including thyroglobulin (TG), which harbored somatic mutations in 3% of the entire cohort. Surprisingly, although TG mutations were not exclusive to mutations in the RAS-MAP kinase pathway, their presence was associated with a significantly worse clinical outcome, which suggests a pathogenic role beyond driving initial oncogenesis. Analysis of metastatic PTC tissue revealed significant enrichment for TG mutations (p < 0.001), including events of apparent clonal expansion. Our results suggest a previously unknown role of TG somatic mutations in the pathogenesis of PTC and its malignant evolution.


Asunto(s)
Carcinoma Papilar/secundario , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación/genética , Tiroglobulina/genética , Neoplasias de la Tiroides/patología , Adulto , Carcinoma Papilar/genética , Estudios de Cohortes , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Arabia Saudita , Neoplasias de la Tiroides/genética
15.
Cancer Cell Int ; 19: 334, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31866764

RESUMEN

BACKGROUND: Endometrial carcinoma (EC) accounts for 5.8% of all cancers in Saudi females. Although most ECs are sporadic, 2-5% tend to be familial, being associated with Lynch syndrome and Cowden syndrome. In this study, we attempted to uncover the frequency, spectrum and phenotype of germline mutations in the proofreading domain of POLE and POLD1 genes in a large cohort of ECs from Middle Eastern region. METHODS: We performed Capture sequencing and Sanger sequencing to screen for proofreading domains of POLE and POLD1 genes in 432 EC cases, followed by evaluation of protein expression using immunohistochemistry. Variant interpretation was performed using PolyPhen-2, MutationAssessor, SIFT, CADD and Mutation Taster. RESULTS: In our cohort, four mutations (0.93%) were identified in 432 EC cases, two each in POLE and POLD1 proofreading domains. Furthermore, low expression of POLE and POLD1 was noted in 41.1% (170/1414) and 59.9% (251/419) of cases, respectively. Both the cases harboring POLE mutation showed high nuclear expression of POLE protein, whereas, of the two POLD1 mutant cases, one case showed high expression and another case showed low expression of POLD1 protein. CONCLUSIONS: Our study shows that germline mutations in POLE and POLD1 proofreading region are a rare cause of EC in Middle Eastern population. However, it is still feasible to screen multiple cancer related genes in EC patients from Middle Eastern region using multigene panels including POLE and POLD1.

16.
Environ Monit Assess ; 191(9): 541, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31385054

RESUMEN

Biophysical parameters affecting biomass carbon have been emphasized in the Paris Agreement for realizing climatic benefits from mitigation projects. The present study was conducted to assess the relation of biophysical parameters with forest biomass carbon in north Kashmir region of Himalayas. The relation of biomass carbon was assessed with (1) species type or strata including Cedrus deodara, mixed I (Cedrus deodara-Pinus wallichiana), mixed II (Abies pindrow-Picea smithiana) and Pinus wallichiana, (2) altitude (1292-2911 m amsl), (3) crown density, (4) aspect, (5) tree count or density and (6) location. Using a stratified sampling design, a total of 188 quadrats of 0.1 ha were laid across the entire region representing different biophysical parameters. Field observation including diameter at breast height and height were recorded and sample biomass (t ha-1) was estimated using volumetric equations. The observed relation of aboveground biomass carbon with species revealed a trend of mixed II ˃ Cedrus deodara ˃ mixed I ˃ Pinus wallichiana. A positive but weak correlation (R2 = 0.02) was found between aboveground biomass carbon and altitude. A reasonably good correlation (R2 = 0.40) was observed to exist between aboveground biomass carbon and crown density. The highest value of average biomass carbon (72.63 t ha-1) was recorded for the north-eastern aspect whereas the lowest value (44.60 t ha-1) was recorded for the eastern aspect. The aboveground biomass carbon and tree count was found positively correlated (+ 0.475, R2 = 0.48). Forest biomass carbon fluctuates within the same geographical region with a variety of biophysical factors. The growth rate of species, photosynthetic ability under different crown densities and climatic conditions could address the reasons for this variability. Biophysical relations of forest biomass carbon can be viewed as an important input for guidelines and policy matters on climate change.


Asunto(s)
Biomasa , Carbono/análisis , Cedrus/crecimiento & desarrollo , Cambio Climático/estadística & datos numéricos , Monitoreo del Ambiente/métodos , Pinus/crecimiento & desarrollo , Altitud , Bosques , India , Pakistán , Árboles/crecimiento & desarrollo
17.
Gut ; 67(4): 663-671, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28183795

RESUMEN

OBJECTIVE: Colorectal cancer (CRC) is a common cancer and a leading cause of cancer deaths. Previous studies have identified a number of key steps in the evolution of CRC but our knowledge of driver mutations in CRC remains incomplete. Recognising the potential of studying different human populations to reveal novel insights in disease pathogenesis, we conducted genomic analysis of CRC in Saudi patients. DESIGN: In the discovery phase of the study, we conducted whole genome sequencing of tumour and corresponding germline DNA in 27 patients with CRC. In addition to known driver mutations, we identified three MED12 somatic mutations. In the replication phase, we employed a next-generation sequencing approach to capture and sequence MED12 and other candidate genes in a larger sample of 400 patients with CRC and confirmed the enrichment for recurrent MED12 mutations. RESULTS: In order to gain insight into a plausible biological mechanism for the potential role of MED12 mutations in CRC, we studied CRC cell lines that differ substantially in the expression level of MED12, and found the latter to be correlated inversely with transforming growth factor (TGF)-ß signalling and directly with apoptosis in response to chemotherapeutic agents. Importantly, these correlations were replicated when MED12 expression was experimentally manipulated. CONCLUSIONS: Our data expand the recently described role of MED12 as a tumour suppressor in other cancers to include CRC, and suggest TGF-ß signalling as a potential mediator of this effect.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Complejo Mediador/genética , Mutación , Factor de Crecimiento Transformador beta/genética , Anciano , Estudios de Cohortes , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/mortalidad , Exoma/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Medio Oriente , Valor Predictivo de las Pruebas , Pronóstico , Sensibilidad y Especificidad
19.
J Cell Biochem ; 118(12): 4296-4307, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28422318

RESUMEN

The genome-wide association studies (GWAS) have enabled us in identifying different breast cancer (BC) susceptibility loci. However, majority of these are non-coding variants with no annotated biological function. We investigated such 78 noncoding genome wide associated SNPs of BC and further expanded the list to 2,162 variants with strong linkage-disequilibrium (LD, r2 ≥0.8). Using multiple publically available algorithms such as CADD, GWAVA, and FATHAMM, we classified all these variants into deleterious, damaging, or benign categories. Out of total 2,241 variants, 23 (1.02%) variants were extreme deleterious (rank 1), 70 (3.12%) variants were deleterious (rank 2), and 1,937 (86.43%) variants were benign (rank 3). The results show 14% of lead or associated variants are under strong negative selection (GERP++ RS ≥2), and ∼22% are under balancing selection (Tajima's D score >2) in CEU population of 1KGP-the regions being positively selected (GERP++ RS <0) in mammalian evolution. The expression quantitative trait loci of highest deleteriously ranked genes were tested on relevant adipose and breast tissues, the results of which were extended for protein expression on breast tissues. From the concordance analysis of ranking system of GWAVA, CADD, and FATHMM, eQTL and protein expression, we identified the deleterious SNPs localized in STXBP4 and ZNF404 genes which might play a role in BC development by dysregulating its gene expression. This simple approach will be easier to implement and to prioritize large scale GWAS data for variety of diseases and link to the potentially unrecognized functional roles of genes. J. Cell. Biochem. 118: 4296-4307, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Proteínas de Transporte Vesicular/genética , Neoplasias de la Mama/metabolismo , Biología Computacional , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Sitios de Carácter Cuantitativo
20.
Hum Genet ; 136(11-12): 1431-1444, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28975465

RESUMEN

Our ability to identify germline variants in hereditary cancer cases remains challenged by the incomplete cataloging of relevant genes and lack of consensus on who should be tested. We designed a panel [hereditary oncogenesis predisposition evaluation (HOPE)] that encompasses most of the genes known to be associated with cancer development and tested its yield on more than 1300 samples of cancer patients. Pathogenic or likely pathogenic variants in high and intermediate risk genes were identified in 16, 23.9, 9.7 and 2.7%, respectively, of peripheral blood or normal tissue samples taken from patients with breast, ovarian, colorectal and thyroid cancer. To confirm specificity of these findings, we tested an ethnically matched cohort of 816 individuals and only identified pathogenic or likely pathogenic variants in 1.59% (0.98% in high risk and 0.61% in intermediate risk). Remarkably, pathogenic or likely pathogenic alleles in DNA repair/genomic instability genes (other than BRCA2, ATM and PALB2) accounted for at least 16.8, 11.1, 50 and 45.5% of mutation-positive breast, ovarian, thyroid and colorectal cancer patients, respectively. Family history was noticeably lacking in a substantial fraction of mutation-positive cases (63.7, 81.5, 42.4 and 87.5% in breast, ovarian, colorectal and thyroid, respectively). Our results show high contribution of germline mutations to cancer predisposition that extends beyond "classical" hereditary cancer genes. Family history was lacking in 63.5% mutation-positive cases, shows that hereditary cancer need not appear familial and suggests that relaxed selection of cancer patients for hereditary cancer panels should be considered.


Asunto(s)
Biomarcadores de Tumor/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Neoplasias/genética , Adulto , Anciano , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA