Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34445431

RESUMEN

The insulin receptor (IR) presents two isoforms (IR-A and IR-B) that differ for the α-subunit C-terminal. Both isoforms are expressed in all human cells albeit in different proportions, yet their functional properties-when bound or unbound to insulin-are not well characterized. From a cell model deprived of the Insulin-like Growth Factor 1 Receptor (IGF1-R) we therefore generated cells exhibiting no IR (R-shIR cells), or only human IR-A (R-shIR-A), or exclusively human IR-B (R-shIR-B) and we studied the specific effect of the two isoforms on cell proliferation and cell apoptosis. In the absence of insulin both IR-A and IR-B similarly inhibited proliferation but IR-B was 2-3 fold more effective than IR-A in reducing resistance to etoposide-induced DNA damage. In the presence of insulin, IR-A and IR-B promoted proliferation with the former significantly more effective than the latter at increasing insulin concentrations. Moreover, only insulin-bound IR-A, but not IR-B, protected cells from etoposide-induced cytotoxicity. In conclusion, IR isoforms have different effects on cell proliferation and survival. When unoccupied, IR-A, which is predominantly expressed in undifferentiated and neoplastic cells, is less effective than IR-B in protecting cells from DNA damage. In the presence of insulin, particularly when present at high levels, IR-A provides a selective growth advantage.


Asunto(s)
Antígenos CD/genética , Resistencia a Medicamentos/efectos de los fármacos , Insulina/farmacología , ARN Interferente Pequeño/farmacología , Receptor de Insulina/genética , Animales , Apoptosis , Línea Celular , Proliferación Celular/efectos de los fármacos , Etopósido/farmacología , Humanos , Ratones , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Receptor IGF Tipo 1/genética , Receptor de Insulina/antagonistas & inhibidores
2.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33418988

RESUMEN

Hypereosinophilia (HE) is a heterogeneous condition with a persistent elevated eosinophil count of >350/mm3, which is reported in various (inflammatory, allergic, infectious, or neoplastic) diseases with distinct pathophysiological pathways. HE may be associated with tissue or organ damage and, in this case, the disorder is classified as hypereosinophilic syndrome (HES). Different studies have allowed for the discovery of two major pathogenetic variants known as myeloid or lymphocytic HES. With the advent of molecular genetic analyses, such as T-cell receptor gene rearrangement assays and Next Generation Sequencing, it is possible to better characterize these syndromes and establish which patients will benefit from pharmacological targeted therapy. In this review, we highlight the molecular alterations that are involved in the pathogenesis of eosinophil disorders and revise possible therapeutic approaches, either implemented in clinical practice or currently under investigation in clinical trials.


Asunto(s)
Síndrome Hipereosinofílico/patología , Receptores de Antígenos de Linfocitos T/genética , Anticuerpos Monoclonales/uso terapéutico , Citocinas/metabolismo , Eosinófilos/citología , Eosinófilos/metabolismo , Reordenamiento Génico , Humanos , Síndrome Hipereosinofílico/tratamiento farmacológico , Síndrome Hipereosinofílico/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo
3.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34299334

RESUMEN

Thyroid cancer is the most common malignancy of the endocrine system, encompassing different entities with distinct histological features and clinical behavior. The diagnostic definition, therapeutic approach, and follow-up of thyroid cancers display some controversial aspects that represent unmet medical needs. Liquid biopsy is a non-invasive approach that detects and analyzes biological samples released from the tumor into the bloodstream. With the use of different technologies, tumor cells, free nucleic acids, and extracellular vesicles can be retrieved in the serum of cancer patients and valuable molecular information can be obtained. Recently, a growing body of evidence is accumulating concerning the use of liquid biopsy in thyroid cancer, as it can be exploited to define a patient's diagnosis, estimate their prognosis, and monitor tumor recurrence or treatment response. Indeed, liquid biopsy can be a valuable tool to overcome the limits of conventional management of thyroid malignancies. In this review, we summarize currently available data about liquid biopsy in differentiated, poorly differentiated/anaplastic, and medullary thyroid cancer, focusing on circulating tumor cells, circulating free nucleic acids, and extracellular vesicles.


Asunto(s)
Biopsia Líquida/métodos , Neoplasias de la Tiroides/sangre , Neoplasias de la Tiroides/patología , Biomarcadores de Tumor/sangre , Ácidos Nucleicos Libres de Células/sangre , Vesículas Extracelulares/patología , Humanos , Biopsia Líquida/tendencias , Células Neoplásicas Circulantes/patología , Pronóstico
4.
Acta Haematol ; 141(4): 261-267, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30965317

RESUMEN

BCR-ABL1-negative myeloproliferative disorders and chronic myeloid leukaemia are haematologic malignancies characterised by single and mutually exclusive genetic alterations. Nevertheless, several patients co-expressing the JAK2V617F mutation and the BCR-ABL1 transcript have been described in the literature. We report the case of a 61-year-old male who presented with an essential thrombocythaemia phenotype and had a subsequent diagnosis of chronic phase chronic myeloid leukaemia. Colony-forming assays demonstrated the coexistence of 2 different haematopoietic clones: one was positive for the JAK2V617F mutation and the other co-expressed both JAK2V617F and the BCR-ABL1 fusion gene. No colonies displayed the BCR-ABL1 transcript alone. These findings indicate that the JAK2V617F mutation was the founding genetic alteration of the disease, followed by the acquisition of the BCR-ABL1 chimeric oncogene. Our data support the hypothesis that a heterozygous JAK2V617F clone may have favoured the bi-clonal nature of this myeloproliferative disorder, generating clones harbouring a second transforming genetic event.


Asunto(s)
Proteínas de Fusión bcr-abl , Regulación Enzimológica de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Janus Quinasa 2 , Leucemia Mielógena Crónica BCR-ABL Positiva , Mutación Missense , Trombocitemia Esencial , Sustitución de Aminoácidos , Ensayo de Unidades Formadoras de Colonias , Proteínas de Fusión bcr-abl/biosíntesis , Proteínas de Fusión bcr-abl/genética , Humanos , Janus Quinasa 2/biosíntesis , Janus Quinasa 2/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/enzimología , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Masculino , Persona de Mediana Edad , Trombocitemia Esencial/enzimología , Trombocitemia Esencial/genética , Trombocitemia Esencial/patología
5.
Int J Mol Sci ; 20(13)2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31269742

RESUMEN

The Insulin-like growth factor (IGF) axis is one of the best-established drivers of thyroid transformation, as thyroid cancer cells overexpress both IGF ligands and their receptors. Thyroid neoplasms encompass distinct clinical and biological entities as differentiated thyroid carcinomas (DTC)-comprising papillary (PTC) and follicular (FTC) tumors-respond to radioiodine therapy, while undifferentiated tumors-including poorly-differentiated (PDTC) or anaplastic thyroid carcinomas (ATCs)-are refractory to radioactive iodine and exhibit limited responses to chemotherapy. Thus, safe and effective treatments for the latter aggressive thyroid tumors are urgently needed. Despite a strong preclinical rationale for targeting the IGF axis in thyroid cancer, the results of the available clinical studies have been disappointing, possibly because of the crosstalk between IGF signaling and other pathways that may result in resistance to targeted agents aimed against individual components of these complex signaling networks. Based on these observations, the combinations between IGF-signaling inhibitors and other anti-tumor drugs, such as DNA damaging agents or kinase inhibitors, may represent a promising therapeutic strategy for undifferentiated thyroid carcinomas. In this review, we discuss the role of the IGF axis in thyroid tumorigenesis and also provide an update on the current knowledge of IGF-targeted combination therapies for thyroid cancer.


Asunto(s)
Carcinogénesis/metabolismo , Transducción de Señal , Somatomedinas/metabolismo , Neoplasias de la Tiroides/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Humanos , Terapia Molecular Dirigida , Transducción de Señal/efectos de los fármacos , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/patología
6.
Int J Mol Sci ; 20(9)2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31064152

RESUMEN

A reduction in BCR-ABL1/ABL1IS transcript levels to <10% after 3 months or <1% after 6 months of tyrosine kinase inhibitor therapy are associated with superior clinical outcomes in chronic myeloid leukemia (CML) patients. In this study, we investigated the reliability of multiple BCR-ABL1 thresholds in predicting treatment outcomes for 184 subjects diagnosed with CML and treated with standard-dose imatinib mesylate (IM). With a median follow-up of 61 months, patients with concordant BCR-ABL1/ABL1IS transcripts below the defined thresholds (10% at 3 months and 1% at 6 months) displayed significantly superior rates of event-free survival (86.1% vs. 26.6%) and deep molecular response (≥ MR4; 71.5% vs. 16.1%) compared to individuals with BCR-ABL1/ABL1IS levels above these defined thresholds. We then analyzed the outcomes of subjects displaying discordant molecular transcripts at 3- and 6-month time points. Among these patients, those with BCR-ABL1/ABL1IS values >10% at 3 months but <1% at 6 months fared significantly better than individuals with BCR-ABL1/ABL1IS <10% at 3 months but >1% at 6 months (event-free survival 68.2% vs. 32.7%; p < 0.001). Likewise, subjects with BCR-ABL1/ABL1IS at 3 months >10% but <1% at 6 months showed a higher cumulative incidence of MR4 compared to patients with BCR-ABL1/ABL1IS <10% at 3 months but >1% at 6 months (75% vs. 18.2%; p < 0.001). Finally, lower BCR-ABL1/GUSIS transcripts at diagnosis were associated with BCR-ABL1/ABL1IS values <1% at 6 months (p < 0.001). Our data suggest that when assessing early molecular responses to therapy, the 6-month BCR-ABL1/ABL1IS level displays a superior prognostic value compared to the 3-month measurement in patients with discordant oncogenic transcripts at these two pivotal time points.


Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Proteínas de Fusión bcr-abl/genética , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Femenino , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Masculino , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Resultado del Tratamiento
7.
Mol Cancer ; 17(1): 56, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29455672

RESUMEN

The introduction of ABL Tyrosine Kinase Inhibitors (TKIs) has significantly improved the outcome of Chronic Myeloid Leukemia (CML) patients that, in large part, achieve satisfactory hematological, cytogenetic and molecular remissions. However, approximately 15-20% fail to obtain optimal responses according to the current European Leukemia Network recommendation because of drug intolerance or resistance.Moreover, a plethora of evidence suggests that Leukemic Stem Cells (LSCs) show BCR-ABL1-independent survival. Hence, they are unresponsive to TKIs, leading to disease relapse if pharmacological treatment is discontinued.All together, these biological events generate a subpopulation of CML patients in need of alternative therapeutic strategies to overcome TKI resistance or to eradicate LSCs in order to allow cure of the disease.In this review we update the role of "non ABL-directed inhibitors" targeting signaling pathways downstream of the BCR-ABL1 oncoprotein and describe immunological approaches activating specific T cell responses against CML cells.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Terapia Molecular Dirigida , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Terapia Combinada , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
8.
Int J Mol Sci ; 18(6)2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28635633

RESUMEN

Thyroid cancers are common endocrine malignancies that comprise tumors with different clinical and histological features. Indeed, papillary and follicular thyroid cancers are slow-growing, well-differentiated tumors, whereas anaplastic thyroid cancers are undifferentiated neoplasias that behave much more aggressively. Well-differentiated thyroid carcinomas are efficiently cured by surgery and radioiodine, unlike undifferentiated tumors that fail to uptake radioactive iodine and are usually resistant to chemotherapy. Therefore, novel and more effective therapies for these aggressive neoplasias are urgently needed. Whereas most genetic events underlying the pathogenesis of well-differentiated thyroid cancers have been identified, the molecular mechanisms that generate undifferentiated thyroid carcinomas are still unclear. To date, one of the best-characterized genetic alterations leading to the development of poorly differentiated thyroid tumors is the loss of the p53 tumor suppressor gene. In addition, the existence of a complex network among p53 family members (p63 and p73) and their interactions with other factors that promote thyroid cancer progression has been well documented. In this review, we provide an update on the current knowledge of the role of p53 family proteins in thyroid cancer and their possible use as a therapeutic target for the treatment of the most aggressive variants of this disease.


Asunto(s)
Neoplasias de la Tiroides/genética , Proteína p53 Supresora de Tumor/genética , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Humanos , Terapia Molecular Dirigida/métodos , Mutación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/metabolismo , Glándula Tiroides/patología , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Proteína p53 Supresora de Tumor/análisis , Proteína p53 Supresora de Tumor/metabolismo
9.
FASEB J ; 28(3): 1221-36, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24297701

RESUMEN

Patients with chronic myeloid leukemia in whom tyrosine kinase inhibitors (TKIs) fail often present mutations in the BCR-ABL catalytic domain. We noticed a lack of substitutions involving 4 amino acids (E286, M318, I360, and D381) that form hydrogen bonds with ponatinib. We therefore introduced mutations in each of these residues, either preserving or altering their physicochemical properties. We found that E286, M318, I360, and D381 are dispensable for ABL and BCR-ABL protein stability but are critical for preserving catalytic activity. Indeed, only a "conservative" I360T substitution retained kinase proficiency and transforming potential. Molecular dynamics simulations of BCR-ABL(I360T) revealed differences in both helix αC dynamics and protein-correlated motions, consistent with a modified ATP-binding pocket. Nevertheless, this mutant remained sensitive to ponatinib, imatinib, and dasatinib. These results suggest that changes in the 4 BCR-ABL residues described here would be selected against by a lack of kinase activity or by maintained responsiveness to TKIs. Notably, amino acids equivalent to those identified in BCR-ABL are conserved in 51% of human tyrosine kinases. Hence, these residues may represent an appealing target for the design of pharmacological compounds that would inhibit additional oncogenic tyrosine kinases while avoiding the emergence of resistance due to point mutations.


Asunto(s)
Proteínas de Fusión bcr-abl/metabolismo , Imidazoles/metabolismo , Piridazinas/metabolismo , Secuencia de Bases , Biocatálisis , Línea Celular , Cartilla de ADN , Humanos
10.
Carcinogenesis ; 35(5): 1132-43, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24445143

RESUMEN

Interferon regulatory factor 5 (IRF5) modulates the expression of genes controlling cell growth and apoptosis. Previous findings have suggested a lack of IRF5 transcripts in both acute and chronic leukemias. However, to date, IRF5 expression and function have not been investigated in chronic myeloid leukemia (CML). We report that IRF5 is expressed in CML cells, where it interacts with the BCR-ABL kinase that modulates its expression and induces its tyrosine phosphorylation. Tyrosine-phosphorylated IRF5 displayed reduced transcriptional activity that was partially restored by imatinib mesylate (IM). Interestingly, a mutant devoid of a BCR-ABL consensus site (IRF5(Y104F)) still presented significant tyrosine phosphorylation. This finding suggests that the oncoprotein phosphorylates additional tyrosine residues or induces downstream signaling pathways leading to further IRF5 phosphorylation. We also found that ectopic expression of IRF5 decreases the proliferation of CML cell lines by slowing their S-G2 transition, increasing the inhibition of BCR-ABL signaling and enhancing the lethality effect observed after treatment with IM, α-2-interferon and a DNA-damaging agent. Furthermore, IRF5 overexpression successfully reduced the clonogenic ability of CML CD34-positive progenitors before and after exposure to the above-indicated cytotoxic stimuli. Our data identify IRF5 as a downstream target of the BCR-ABL kinase, suggesting that its biological inactivation contributes to leukemic transformation.


Asunto(s)
Proteínas de Fusión bcr-abl/metabolismo , Factores Reguladores del Interferón/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Benzamidas/farmacología , Benzamidas/toxicidad , Catálisis , Línea Celular Tumoral , Proliferación Celular , Etopósido/farmacología , Etopósido/toxicidad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Mesilato de Imatinib , Interferón-alfa/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Fosforilación , Piperazinas/farmacología , Piperazinas/toxicidad , Unión Proteica , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirimidinas/farmacología , Pirimidinas/toxicidad , Transducción de Señal/efectos de los fármacos , Activación Transcripcional , Ensayo de Tumor de Célula Madre
11.
Pathol Res Pract ; 259: 155350, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781764

RESUMEN

Fluoroedenite-induced pleural mesothelioma (FE-induced-PM) is a rare and small subset of PM that shares with its asbestos-induced counterpart the same aggressive biological behavior and poor prognosis, but that differs from it from a pathogenetic point of view as it is associated with exposure to fluoroedenite, a carcinogenic agent that shows similarities with tremolite amphibolic asbestos fibers. Although it has been demonstrated that asbestos-induced PMs frequently harbor CDKN2A homozygous deletion and that the immunohistochemical loss of MTAP may represent a cheap and reliable surrogate marker for this molecular alteration, little is known about the molecular landscape and the reliability of MTAP immunohistochemistry in this peculiar subset of PM. The study herein presented investigated the prevalence of CDKN2A homozygous deletion and its concordance with MTAP immunohistochemical status on a cohort of 10 cases of FE-induced-PM from patients with environmental exposure to FE fibers, who were residents in the small town of Biancavilla (Sicily, Italy) or nearby areas. CDKN2A homozygous deletions were found in 3 out of 10 cases (30%) and all these cases showed concomitant cytoplasmic loss of MTAP with a concordance rate of 100%. Despite the relatively low number of cases included in our series, MTAP immunohistochemistry seemed to represent a reliable immunohistochemical surrogate marker of CDKNA homozygous deletion even in this subset of PMs.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina , Inmunohistoquímica , Mesotelioma , Neoplasias Pleurales , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Asbestos Anfíboles , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Eliminación de Gen , Homocigoto , Mesotelioma/genética , Mesotelioma/patología , Mesotelioma/inducido químicamente , Mesotelioma/metabolismo , Mesotelioma Maligno/patología , Mesotelioma Maligno/genética , Neoplasias Pleurales/genética , Neoplasias Pleurales/patología , Neoplasias Pleurales/inducido químicamente , Neoplasias Pleurales/metabolismo , Purina-Nucleósido Fosforilasa/genética
12.
Genes (Basel) ; 14(7)2023 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-37510235

RESUMEN

Cancer molecular profiling obtained with conventional bulk sequencing describes average alterations obtained from the entire cellular population analyzed. In the era of precision medicine, this approach is unable to track tumor heterogeneity and cannot be exploited to unravel the biological processes behind clonal evolution. In the last few years, functional single-cell omics has improved our understanding of cancer heterogeneity. This approach requires isolation and identification of single cells starting from an entire population. A cell suspension obtained by tumor tissue dissociation or hematological material can be manipulated using different techniques to separate individual cells, employed for single-cell downstream analysis. Single-cell data can then be used to analyze cell-cell diversity, thus mapping evolving cancer biological processes. Despite its unquestionable advantages, single-cell analysis produces massive amounts of data with several potential biases, stemming from cell manipulation and pre-amplification steps. To overcome these limitations, several bioinformatic approaches have been developed and explored. In this work, we provide an overview of this entire process while discussing the most recent advances in the field of functional omics at single-cell resolution.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Biología Computacional , Análisis de Secuencia , Tecnología , Análisis de la Célula Individual/métodos
13.
Onco Targets Ther ; 16: 235-247, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056632

RESUMEN

Luminal Androgen Receptor Breast Cancers (LAR BCs) are characterized by a triple negative phenotype and by the expression of Androgen Receptor (AR), coupled with luminal-like genomic features. This unique BC subtype, accounting for about 10% of all triple negative BC, has raised considerable interest given its ill-defined clinical behavior and the chance to exploit AR as a therapeutic target. The complexity of AR activity in BC cells, as revealed by decades of mechanistic studies, holds promise to offer additional therapeutic options beyond mere AR inhibition. Indeed, preclinical and translational evidence showed that several pathways and mediators, including PI3K/mToR, HER2, BRCA1, cell cycle and immune modulation, can be tackled in LAR BCs. Moving from bench to bedside, several clinical trials tested anti-androgen therapies in LAR BCs, but their results are inconsistent and often disappointing. More recently, studies exploring combinations of anti-androgen agents with other targeted therapies have been designed and are currently ongoing. While the results from these trials are awaited, a concerted effort will be needed to find the biological vulnerabilities of LAR BCs which may disclose new and effective therapeutic targets, eventually improving patients' outcomes.

14.
Front Endocrinol (Lausanne) ; 14: 1081831, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37361518

RESUMEN

Introduction: Breast cancer is the most common malignancy in women, and it is linked to several risk factors including genetic alterations, obesity, estrogen signaling, insulin levels, and glucose metabolism deregulation. Insulin and Insulin-like growth factor signaling exert a mitogenic and pro-survival effect. Indeed, epidemiological and pre-clinical studies have shown its involvement in the development, progression, and therapy resistance of several cancer types including breast cancer. Insulin/Insulin-like growth factor signaling is triggered by two insulin receptor isoforms identified as IRA and IRB and by Insulin-like growth factor receptor I. Both classes of receptors show high homology and can initiate the intracellular signaling cascade alone or by hybrids formation. While the role of Insulin-like growth factor receptor I in breast cancer progression and therapy resistance is well established, the effects of insulin receptors in this context are complex and not completely elucidated. Methods: We used estrogen-dependent insulin-like growth factor receptor I deleted gene (MCF7IGFIRKO) breast cancer cell models, lentivirally transduced to over-express empty-vector (MCF7IGFIRKO/EV), IRA (MCF7IGFIRKO/IRA) or IRB (MCF7IGFIRKO/IRB), to investigate the role of insulin receptors on the antiproliferative activity of tamoxifen in presence of low and high glucose concentrations. The tamoxifen-dependent cytotoxic effects on cell proliferation were determined by MTT assay and clonogenic potential measurement. Cell cycle and apoptosis were assessed by FACS, while immunoblot was used for protein analysis. Gene expression profiling was investigated by a PCR array concerning genes involved in apoptotic process by RT-qPCR. Results: We found that glucose levels played a crucial role in tamoxifen response mediated by IRA and IRB. High glucose increased the IC50 value of tamoxifen for both insulin receptors and IRA-promoted cell cycle progression more than IRB, independently of glucose levels and insulin stimulation. IRB, in turn, showed anti-apoptotic properties, preserving cells' survival after prolonged tamoxifen exposure, and negatively modulated pro-apoptotic genes when compared to IRA. Discussion: Our findings suggest that glucose levels modify insulin receptors signaling and that this event can interfere with the tamoxifen therapeutic activity. The investigation of glucose metabolism and insulin receptor expression could have clinical implications in Estrogen Receptor positive breast cancer patients receiving endocrine treatments.


Asunto(s)
Neoplasias de la Mama , Glucosa , Receptor de Insulina , Tamoxifeno , Línea Celular Tumoral , Tamoxifeno/farmacología , Ciclo Celular , Receptor de Insulina/metabolismo , Glucosa/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Quinasas MAP Reguladas por Señal Extracelular , Fosforilación , Expresión Génica/efectos de los fármacos , Apoptosis
15.
Onco Targets Ther ; 16: 803-816, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37807980

RESUMEN

Purpose: Chronic Myeloid Leukemia (CML) is a clonal disorder of the hematopoietic stem cell caused by expression of the BCR::ABL1 oncoprotein. High BCR::ABL1 levels have been associated to proliferative advantage of leukemic cells, blast crisis progression and tyrosine kinase inhibitors (TKIs) inefficacy. We have previously shown that high BCR::ABL1/GUSIS transcripts measured at diagnosis are associated with inferior responses to standard dose Imatinib (IM). However, the mechanisms underlying the higher rates of disease progression and development of TKIs resistance dependent on elevated BCR::ABL1 levels remain unclear. Methods: Leukemic cells were collected from CML patients showing, at diagnosis, high or low BCR::ABL1/GUSIS. BCR::ABL1 expression levels were measured using real-time PCR. Short-term culture and long-term culture-initiating cells assays were employed to investigate the role of BCR::ABL1 gene-expression levels on proliferation, clonogenicity, signal transduction, TKIs responsiveness and self-renewal ability. Cell division was performed by carboxyfluorescein-succinimidyl ester (CFSE) assay. Results: We found that BCR::ABL1 oncogene expression levels correlate in both PMNs and CD34+ cells. Furthermore, high oncogene levels increased both proliferation and anti-apoptotic signaling via ERK and AKT phosphorylation. Moreover, high BCR::ABL1 expression reduced the clonogenicity of leukemic CD34+ cells and increased their sensitivity to high doses IM but not to those of dasatinib. Furthermore, we observed that high BCR::ABL1 levels are associated with a reduced self-renewal of primitive leukemic cells and, also, that these cells showed comparable TKIs responsiveness with cells expressing lower BCR::ABL1 levels. Interestingly, we found a direct correlation between high BCR::ABL1 levels and reduced number of quiescent leukemic cells caused by increasing their cycling. Conclusion: Higher BCR::ABL1 levels improving the proliferation, anti-apoptotic signaling and reducing self-renewal properties cause an increased expansion of leukemic clone.

16.
Mol Cancer ; 11: 21, 2012 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-22507190

RESUMEN

BACKGROUND: Interferon Regulatory Factor 5 is a transcription factor that regulates the expression of genes involved in the response to viral infection and in the stimulation of the immune system. Moreover, multiple studies have demonstrated that it negatively regulates cell growth and oncogenesis, favoring cell differentiation and apoptosis.Thyroid carcinoma represents 98% of all thyroid malignancies and has shown a steady increase in incidence in both the USA and western European countries. FINDINGS: We investigated the expression, localization and function of IRF5 in thyroid cancer cells and found that it is highly expressed in both primary and immortalized thyroid carcinomas but not in normal thyrocytes. IRF5 levels were variably modulated by Interferon alpha but IRF5 only localized in the cytoplasmic compartment, thus failing to induce p21 expression as previously reported in different cell models. Furthermore, ectopic IRF5 increased both the proliferation rate and the clonogenic potential of malignant thyroid cells, protecting them from the cytotoxic effects of DNA-damaging agents. These results were directly attributable to IRF5, as demonstrated by the reduction in colony-forming ability of thyroid cancer cells after IRF5 silencing. An IRF5-dependent induction of endogenous B-Raf observed in all thyroid cancer cells might contribute to these unexpected effects. CONCLUSIONS: These findings suggest that, in thyroid malignancies, IRF5 displays tumor-promoting rather than tumor-suppressor activities.


Asunto(s)
Factores Reguladores del Interferón/genética , Neoplasias de la Tiroides/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Factores Reguladores del Interferón/metabolismo , Interferón-alfa/farmacología , Fosforilación , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Neoplasias de la Tiroides/metabolismo
17.
Cancer Manag Res ; 14: 1341-1352, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35411189

RESUMEN

Purpose: Germline mutations of BRCA1 and BRCA2 are associated with a defined lifetime risk of breast (BC), ovarian (OC) and other cancers. Testing BRCA genes is pivotal to assess individual risk, but also to pursue preventive approaches in healthy carriers and tailored treatments in tumor patients. The prevalence of BRCA1 and BRCA2 alterations varies broadly across different geographic regions and, despite data about BRCA pathogenic variants among Sicilian families exist, studies specifically addressing eastern Sicily population are lacking. The aim of our study was to investigate the incidence and distribution of BRCA pathogenic germline alterations in a cohort of BC patients from eastern Sicily and to evaluate their associations with specific BC features. Patients and Methods: Mutational status was assessed in a cohort of 389 BC patients, using next generation sequencing. The presence of alterations was correlated with tumor grading and proliferation index. Results: Overall, 35 patients (9%) harbored a BRCA pathogenic variant, 17 (49%) in BRCA1 and 18 (51%) in BRCA2. BRCA1 alterations were prevalent among triple negative BC patients, whereas BRCA2 mutations were more common in subjects with luminal B BC. Tumor grading and proliferation index were both significantly higher among subjects with BRCA1 variants compared to non-carriers. Conclusion: Our findings provide an overview about BRCA mutational status among BC patients from eastern Sicily and confirm the role of NGS analysis to identify hereditary BC patients. Overall, these data are consistent with previous evidences supporting BRCA screening to properly prevent and treat cancer among mutation carriers.

18.
Mol Cell Endocrinol ; 557: 111739, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35940390

RESUMEN

The insulin receptor (IR) gene undergoes differential splicing generating two IR isoforms, IR-A and IR-B. The roles of IR-A in cancer and of IR-B in metabolic regulation are well known but the molecular mechanisms responsible for their different biological effects are poorly understood. We aimed to identify different or similar protein substrates and signaling linked to each IR isoforms. We employed mouse fibroblasts lacking IGF1R gene and expressing exclusively either IR-A or IR-B. By proteomic analysis a total of 2530 proteins were identified and quantified. Proteins and pathways mostly associated with insulin-activated IR-A were involved in cancer, stemness and interferon signaling. Instead, proteins and pathways associated with insulin-stimulated IR-B-expressing cells were mostly involved in metabolic or tumor suppressive functions. These results show that IR-A and IR-B recruit partially different multiprotein complexes in response to insulin, suggesting partially different functions of IR isoforms in physiology and in disease.


Asunto(s)
Neoplasias , Receptor de Insulina , Animales , Insulina/metabolismo , Interferones , Ratones , Complejos Multiproteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteómica , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
19.
Diagnostics (Basel) ; 12(5)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35626209

RESUMEN

BACKGROUND: Detection of BCR-ABL1 transcript level via real-time quantitative-polymerase-chain reaction (Q-PCR) is a clinical routine for disease monitoring, assessing Tyrosine Kinase Inhibitor therapy efficacy and predicting long-term response in chronic myeloid leukemia (CML) patients. For valid Q-PCR results, each stage of the laboratory procedures need be optimized, including the cell-counting method that represents a critical step in obtaining g an appropriate amount of RNA and reliable Q-PCR results. Traditionally, manual or automated methods are used for the detection and enumeration of white blood cells (WBCs). Here, we compared the performance of the manual counting measurement to the flow cytometry (FC)-based automatic counting assay employing CytoFLEX platform. METHODS: We tested five different types of measurements: one manual hemocytometer-based count and four FC-based automatic cell-counting methods, including absolute, based on beads, based on 7-amino actinomycin D, combining and associating beads and 7AAD. The recovery efficiency for each counting method was established considering the quality and quantity of total RNA isolated and the Q-PCR results in matched samples from 90 adults with CML. RESULTS: Our analyses showed no consistent bias between the different types of measurements, with comparable number of WBCs counted for each type of measurement. Similarly, we observed a 100% concordance in the amount of RNA extracted and in the Q-PCR cycle threshold values for both BCR-ABL1 and ABL1 gene transcripts in matched counted specimens from all the investigated groups. Overall, we show that FC-based automatic absolute cell counting has comparable performance to manual measurements and allows accurate cell counts without the use of expensive beads or the addition of the time-consuming intercalator 7AAD. CONCLUSIONS: This automatic method can replace the more laborious manual workflow, especially when high-throughput isolations from blood of CML patients are needed.

20.
Cancer Genomics Proteomics ; 19(3): 350-361, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35430568

RESUMEN

BACKGROUND/AIM: Malignant melanoma is a skin cancer originating from the oncogenic transformation of melanocytes located in the epidermal layers. Usually, the patient's prognosis depends on timing of disease detection and molecular and genetic profiling, which may all significantly influence mortality rates. Genetic analyses often detect somatic BRAF, NRAS and cKIT mutations, germline substitutions in CDKN2A, and alterations of the PI3K-AKT-PTEN pathway. A peculiar molecular future of melanoma is its high immunogenicity, making this tumor targetable by programmed cell death protein 1-specific antibodies. MATERIALS AND METHODS: Ten formalin-fixed paraffin embedded samples derived from melanoma patients were subjected to next-generation sequencing (NGS) analysis using the FDA-approved FoundationOne CDx™ test. The molecular features of each case were then analyzed employing several in silico prediction tools. RESULTS: We analyzed the mutational landscape of patients with metastatic or relapsed cutaneous melanoma to define enriched pathways and protein-protein interactions. The analysis showed that both known genetic alterations and variants of unknown significance rely on redundant signaling converging on similar gene ontology biological processes. Complex informatics analyses of NGS-based genetic results identified pivotal signaling pathways that could provide additional targets for cancer treatment. CONCLUSION: Our data suggest an additional role for NGS in melanoma, as analysis of comprehensive genetic findings using innovative informatic tools may lengthen the list of druggable molecular targets that impact patient outcome.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Carcinogénesis , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Melanoma/patología , Mutación , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Melanoma Cutáneo Maligno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA