Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Immunol ; 208(12): 2597-2612, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35867677

RESUMEN

Complement genes encompass a wide array of variants, giving rise to numerous protein isoforms that have often been shown to exhibit clinical significance. Given that these variants have been discovered over a span of 50 y, one challenging consequence is the inconsistency in the terminology used to classify them. This issue is prominently evident in the nomenclature used for complement C6 and C7 variants, for which we observed a great discrepancy between previously published works and variants described in current genome browsers. This report discusses the causes for the discrepancies in C6 and C7 nomenclature and seeks to establish a classification system that would unify existing and future variants. The inconsistency in the methods used to annotate amino acids and the modifications pinpointed in the C6 and C7 primers are some of the factors that contribute greatly to the discrepancy in the nomenclature. Several variants that were classified incorrectly are highlighted in this report, and we showcase first-hand how a unified classification system is important to match previous with current genetic information. Ultimately, we hope that the proposed classification system of nomenclature becomes an incentive for studies on complement variants and their physiological and/or pathological effects.


Asunto(s)
Complemento C6 , Complemento C7 , Complemento C5 , Complemento C6/genética , Complemento C7/genética , Proteínas del Sistema Complemento
2.
Front Immunol ; 15: 1330095, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333209

RESUMEN

Introduction: The complement system is part of innate immunity and is comprised of an intricate network of proteins that are vital for host defense and host homeostasis. A distinct mechanism by which complement defends against invading pathogens is through the membrane attack complex (MAC), a lytic structure that forms on target surfaces. The MAC is made up of several complement components, and one indispensable component of the MAC is C7. The role of C7 in MAC assembly is well documented, however, inherent characteristics of C7 are yet to be investigated. Methods: To shed light on the molecular characteristics of C7, we examined the properties of serum-purified C7 acquired using polyclonal and novel monoclonal antibodies. The properties of serum­purified C7 were investigated through a series of proteolytic analyses, encompassing Western blot and mass spectrometry. The nature of C7 protein-protein interactions were further examined by a novel enzyme-linked immunosorbent assay (ELISA), as well as size­exclusion chromatography. Results: Protein analyses showcased an association between C7 and clusterin, an inhibitory complement regulator. The distinct association between C7 and clusterin was also demonstrated in serum-purified clusterin. Further assessment revealed that a complex between C7 and clusterin (C7-CLU) was detected. The C7-CLU complex was also identified in healthy serum and plasma donors, highlighting the presence of the complex in circulation. Discussion: Clusterin is known to dissociate the MAC structure by binding to polymerized C9, nevertheless, here we show clusterin binding to the native form of a terminal complement protein in vivo. The presented data reveal that C7 exhibits characteristics beyond that of MAC assembly, instigating further investigation of the effector role that the C7-CLU complex plays in the complement cascade.


Asunto(s)
Clusterina , Complemento C7 , Complemento C7/metabolismo , Proteínas del Sistema Complemento/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Activación de Complemento
3.
Microorganisms ; 11(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37894145

RESUMEN

Shiga toxins (Stxs), especially the Stx2a subtype, are the major virulence factors involved in enterohemorrhagic Escherichia coli (EHEC)-associated hemolytic uremic syndrome (eHUS), a life-threatening disease causing acute kidney injury, especially in children. After oral transmission and colonization in the gut, EHEC release Stx. Intracellular cleavage of the Stx A subunit, when followed by reduction, boosts the enzymatic activity that causes damage to targeted cells. This cleavage was assumed to be mostly mediated by furin during Stx intracellular trafficking. To investigate whether this cleavage could occur in the intestine, even prior to entering target cells, Stx2a A subunit structure (intact or cleaved) was characterized after its exposure to specific host factors present in human stool. The molecular weight of Stx2a A subunit/fragments was determined by immunoblotting after electrophoretic separation under reducing conditions. In this study, it was demonstrated that Stx2a is cleaved by certain human stool components. Trypsin and chymotrypsin-like elastase 3B (CELA3B), two serine proteases, were identified as potential candidates that can trigger the extracellular cleavage of Stx2a A subunit directly after its secretion by EHEC in the gut. Whether the observed cleavage indeed translates to natural infections and plays a role in eHUS pathogenesis has yet to be determined. If so, it seems likely that a host's protease profile could affect disease development by changing the toxin's biological features.

4.
Viruses ; 13(12)2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34960645

RESUMEN

Overactivation of the complement system has been characterized in severe COVID-19 cases. Complement components are known to trigger NETosis via the coagulation cascade and have also been reported in human tracheobronchial epithelial cells. In this longitudinal study, we investigated systemic and local complement activation and NETosis in COVID-19 patients that underwent mechanical ventilation. Results confirmed significantly higher baseline levels of serum C5a (24.5 ± 39.0 ng/mL) and TCC (11.03 ± 8.52 µg/mL) in patients compared to healthy controls (p < 0.01 and p < 0.0001, respectively). Furthermore, systemic NETosis was significantly augmented in patients (5.87 (±3.71) × 106 neutrophils/mL) compared to healthy controls (0.82 (±0.74) × 106 neutrophils/mL) (p < 0.0001). In tracheal fluid, baseline TCC levels but not C5a and NETosis, were significantly higher in patients. Kinetic studies of systemic complement activation revealed markedly higher levels of TCC and CRP in nonsurvivors compared to survivors. In contrast, kinetic studies showed decreased local NETosis in tracheal fluid but comparable local complement activation in nonsurvivors compared to survivors. Systemic TCC and NETosis were significantly correlated with inflammation and coagulation markers. We propose that a ratio comprising systemic inflammation, complement activation, and chest X-ray score could be rendered as a predictive parameter of patient outcome in severe SARS-CoV-2 infections.


Asunto(s)
COVID-19/inmunología , Activación de Complemento/inmunología , Inflamación/inmunología , Anciano , Anciano de 80 o más Años , COVID-19/mortalidad , Complemento C5a , Citocinas/sangre , Células Epiteliales , Femenino , Humanos , Inflamación/sangre , Cinética , Estudios Longitudinales , Masculino , Estudios Prospectivos , SARS-CoV-2 , Tórax/diagnóstico por imagen , Carga Viral
5.
J Oncol ; 2020: 8097872, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32565808

RESUMEN

Adipocyte enhancer-binding protein 1 (AEBP1) is a transcriptional repressor involved in the regulation of critical biological processes including adipogenesis, mammary gland development, inflammation, macrophage cholesterol homeostasis, and atherogenesis. Several years ago, we first reported the ability of AEBP1 to exert a positive control over the canonical NF-κB pathway. Indeed, AEBP1 positively regulates NF-κB activity via its direct interaction with IκBα, a key NF-κB inhibitor. AEBP1 overexpression results in uncontrollable activation of NF-κB, which may have severe pathogenic outcomes. Recently, the regulatory relationship between AEBP1 and NF-κB pathway has been of great interest to many researchers primarily due to the implication of NF-κB signaling in critical cellular processes such as inflammation and cancer. Since constitutive activation of NF-κB is widely implicated in carcinogenesis, AEBP1 overexpression is associated with tumor development and progression. Recent studies sought to explore the effects of the overexpression of AEBP1, as a potential oncogene, in different types of cancer. In this review, we analyze the effects of AEBP1 overexpression in a variety of malignancies (e.g., breast cancer, glioblastoma, bladder cancer, gastric cancer, colorectal cancer, ovarian cancer, and skin cancer), with a specific focus on the AEBP1-mediated control over the canonical NF-κB pathway. We also underscore the ability of AEBP1 to regulate crucial cancer-related events like cell proliferation and apoptosis in light of other key pathways (e.g., PI3K-Akt, sonic hedgehog (Shh), p53, parthanatos (PARP-1), and PTEN). Identifying AEBP1 as a potential biomarker for cancer prognosis may lead to a novel therapeutic target for the prevention and/or treatment of various types of cancer.

6.
Eur J Pharmacol ; 815: 512-521, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29032105

RESUMEN

Sesamin is the major active ingredient is Sesamum indicum seeds. Several studies revealed that sesamin possesses potent anti-cancer properties. The anti-cancer effects of sesamin have been mainly attributed to its anti-proliferative, pro-apoptotic, anti-inflammatory, anti-metastatic, anti- and pro-angiogenic, and pro-autophagocytic activities. In this review, we provide a comprehensive summary of the reported anti-cancer effects of sesamin, both in vitro and in vivo. Experimental findings related to the potential of sesamin to attenuate oxidative stress, inflammation, proliferation, metastasis, and angiogenesis in various cancer cells and tumors are analyzed. Studies focusing on the ability of sesamin to induce apoptosis and autophagy in cancer cells are also underscored. Moreover, the molecular mechanisms underlying the anti-cancer effects of sesamin are highlighted, and the major signaling pathways targeted by sesamin are identified. Although the exact signaling events triggered by sesamin in cancer cells are not fully revealed, our analysis indicates that NF-κB, STAT3, JNK, ERK1/2, p38 MAPK, PI3K/AKT, caspase-3, and p53 signaling pathways are critically involved in mediating the anti-cancer effects of sesamin. In sum, the experimental evidence suggesting that sesamin could exert potent anti-cancer activities in vitro and in vivo is compelling. Hence, sesamin can potentially be employed as an effective adjuvant therapeutic agent in ameliorating tumor development and progression, and therefore, it could be used in the prevention and/or treatment of various types of cancer.


Asunto(s)
Antineoplásicos/farmacología , Dioxoles/farmacología , Lignanos/farmacología , Semillas/química , Sesamum/química , Animales , Antineoplásicos/uso terapéutico , Dioxoles/uso terapéutico , Humanos , Lignanos/uso terapéutico , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA