Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Clin Periodontol ; 45(7): 806-817, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29779262

RESUMEN

AIM: This study tests the hypothesis that salivary extracellular RNA (exRNA) biomarkers can be developed for gingivitis detection and monitoring disease regression. MATERIALS AND METHODS: Salivary exRNA biomarker candidates were developed from a total of 100 gingivitis and non-gingivitis individuals using Affymetrix's expression microarrays. The top 10 differentially expressed exRNAs were tested in a clinical cohort to determine whether the discovered salivary exRNA markers for gingivitis were associated with clinical gingivitis and disease regression. For this purpose, unstimulated saliva was collected from 30 randomly selected gingivitis subjects, the gingival and plaque indexes scores were taken at baseline, 3 and 6 weeks and salivary exRNAs were assayed by means of reverse transcription quantitative polymerase chain reaction. RESULTS: Eight salivary exRNA biomarkers developed for gingivitis were statistically significantly changed over time, consistent with disease regression. A panel of four salivary exRNAs [SPRR1A, lnc-TET3-2:1, FAM25A, CRCT1] can detect gingivitis with a clinical performance of 0.91 area under the curve, with 71% sensitivity and 100% specificity. CONCLUSIONS: The clinical values of the developed salivary exRNA biomarkers are associated with gingivitis regression. They offer strong potential to be advanced for definitive validation and clinical laboratory development test.


Asunto(s)
Gingivitis , Biomarcadores , Índice de Placa Dental , Encía , Humanos , Saliva
2.
J Clin Dent ; 29(Spec No A): A46-54, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30620871

RESUMEN

OBJECTIVES: These studies aimed to assess the short-term (12-hour, single use) and long-term (four weeks, continuous use) efficacy of a new Dual Zinc plus Arginine dentifrice against intra-oral halitosis versus a negative control. METHODS: Two clinical studies were conducted to assess the dentifrice: a four-week, continuous use parallel design versus a negative control and a single use crossover design versus a negative control. Both studies used organoleptic and hedonic odor judge scores measured 12 hours overnight after product use as the primary efficacy variable. Additionally, the single use study employed SIFT-MS to quantify the intra-oral concentration of volatile sulfur compounds as a complementary measure of efficacy. RESULTS: In both studies, the Dual Zinc plus Arginine dentifrice provided statistically significant improvements in breath quality across all measures versus a negative control. CONCLUSIONS: Improvements in breath quality were attributed to the effects of zinc cations delivered by the uniquely formulated dentifrice.


Asunto(s)
Arginina , Dentífricos , Halitosis , Zinc , Análisis de Varianza , Arginina/uso terapéutico , Dentífricos/uso terapéutico , Halitosis/terapia , Humanos , Zinc/uso terapéutico
3.
J Clin Dent ; 29(Spec No A): A10-19, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30620866

RESUMEN

OBJECTIVES: To investigate bioavailability enhancement of zinc on model oral surfaces and in oral biofilms in vitro through strategic formulation with two sources of zinc and L-arginine. METHODS: To modulate the bioavailability of active zinc ions in a zinc citrate dentifrice, an additive research strategy was pursued. A series of zinc citrate dentifrice formulations were prepared with increasing replacement of zinc citrate with zinc oxide (a water insoluble source of zinc ions) to generate a Dual Zinc active system. A screening of isolated zinc and amino acid effects in simple solutions using zeta potential and uptake to model oral surfaces was performed in an effort to determine the effect of particle charge on zinc bioavailability. Zinc delivery and antibacterial efficacy of the Dual Zinc plus Arginine dentifrice formula were tested using in vitro oral epithelial tissue and saliva-derived biofilm models. Furthermore, zinc penetration and retention were determined by subjecting in vitro biofilms to dynamic flow after treatment with the Dual Zinc plus Arginine dentifrice with treated biofilms evaluated for zinc using imaging mass spectrometry (I-MS). Bacterial adhesion to gingival epithelial cells treated with the Dual Zinc plus Arginine dentifrice was imaged upon challenging with Streptococcus gordonii. RESULTS: Addition of zinc oxide into a zinc citrate dentifrice formula enhanced the efficacy of the system against anaerobic biofilms in a concentration- dependent manner. L-arginine further provided a significant positive charge (+36 mV) to the zinc oxide suspension (+16 mV) as measured by zeta potential. Simple solutions of the Dual Zinc active showed increased zinc uptake on model oral surfaces as a direct function of L-arginine concentration. Antibacterial efficacy of a Dual Zinc plus Arginine dentifrice was evaluated through multiple mechanisms. Enhanced antibacterial performance was observed through significant reductions in metabolic activity as measured through bacterial glycolytic function (p = 0.0001) and total oxygen consumption (p = 0.0001). Greater penetration and retention of zinc was observed in bacterial biofilms treated with the Dual Zinc plus Arginine dentifrice in comparison to treatment with a Dual Zinc dentifrice after twelve hours of dynamic flow (10 mL/hour) in an in vitro drip flow biofilm culture. Confocal microscopy showed adherent bacteria on cheek cells treated with the Dual Zinc plus Arginine dentifrice formula. CONCLUSIONS: The combination of zinc citrate, zinc oxide, and the amino acid L-arginine in a dentifrice formula enhances the bioavailability of zinc to model oral tissue surfaces, resulting in unique physicochemical effects. The significant antimicrobial control associated with the Dual Zinc plus Arginine dentifrice provides a unique vehicle toward achieving whole mouth health.


Asunto(s)
Placa Dental , Dentífricos , Zinc , Arginina , Disponibilidad Biológica , Placa Dental/prevención & control , Dentífricos/farmacocinética , Humanos , Zinc/farmacocinética
4.
Inorg Chem ; 55(20): 10094-10097, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27689445

RESUMEN

A novel water-soluble cationic zinc lysine coordination compound, [Zn[(C6H14N2O2)]2Cl]Cl·2H2O (1), has been designed and synthesized and its crystal structure determined. The aqueous solution of this coordination compound is not only transparent and stable at room temperature but it is also nearly neutral (pH ∼ 7). It is worth noting that zinc oxide (ZnO) forms in situ upon dilution of a solution of the compound. The bioactivity of ZnO has been confirmed using an Alarma Blue assay. These unique properties allow the coordination compound to gently grow ZnO coating with excellent antibacterial benefits onto biomaterial surfaces in a facile and safe manner.


Asunto(s)
Materiales Biocompatibles/química , Complejos de Coordinación/química , Lisina/química , Óxido de Zinc/química , Animales , Antibacterianos/química , Antibacterianos/farmacología , Complejos de Coordinación/farmacología , Humanos , Lisina/farmacología , Piel/química , Solubilidad , Staphylococcus aureus/efectos de los fármacos , Porcinos , Agua/química , Óxido de Zinc/farmacología
5.
J Cosmet Sci ; 66(2): 95-111, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26454974

RESUMEN

The interactions between commercial antiperspirant (AP) salts [aluminum chlorohydrate (ACH), activated ACH, aluminum sesquichlorohydrate (ASCH), zirconium aluminum glycine (ZAG), activated ZAG), pure aluminum polyoxocations (Al13-mer, Al30-mer), and the zirconium(IV)-glycine complex Zr6 (O)4 (OH)4 (H2O)8 (Gly)8]12+(-) (CP-2 or ZG) with Bovine serum albumin (BSA) were studied using zeta potential and turbidity measurements. The maximal turbidity, which revealed the optimal interactions between protein and metal salts, for all protein-metal salt samples was observed at the isoelectric point (IEP), where the zeta potential of the solution was zero. Efficacy of AP salts was determined via three parameters: the amount of salt required to flocculate BSA to reach IEP, the turbidity of solution at the IEP, and the pH range over which the turbidity of the solution remains sufficiently high. By comparing active salt performance from this work to traditional prescreening methods, this methodology was able to provide a consistent efficacy assessment for metal actives in APs or in water treatment.


Asunto(s)
Aluminio/administración & dosificación , Antitranspirantes , Circonio/administración & dosificación , Nefelometría y Turbidimetría
6.
Langmuir ; 30(18): 5248-55, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24754516

RESUMEN

The hierarchical assembly of inorganic and organic building blocks is an efficient strategy to produce high-performance materials which has been demonstrated in various biomaterials. Here, we report a layer-by-layer (LBL) assembly method to fabricate ultrathin hybrid films from nanometer-scale ionic clusters and proteins. Two types of cationic clusters (hydrolyzed aluminum clusters and zirconium-glycine clusters) were assembled with negatively charged bovine serum albumin (BSA) protein to form high-quality hybrid films, due to their strong electrostatic interactions and hydrogen bonding. The obtained hybrid films were characterized by scanning electron microscope (SEM), UV-vis, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF), and X-ray diffraction (XRD). The results demonstrated that the cluster-protein hybrid films exhibited structural homogeneity, relative transparency, and bright blue fluorescence. More importantly, these hybrid films displayed up to a 70% increase in hardness and up to a 100% increase in reduced Young's modulus compared to the pure BSA film. These hybrid cluster-protein films could be potentially used as biomedical coatings in the future because of their good transparency and excellent mechanical properties.


Asunto(s)
Materiales Biocompatibles/química , Polímeros/química , Animales , Bovinos , Microscopía Electrónica de Rastreo , Albúmina Sérica Bovina/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
7.
Microbiol Spectr ; 11(1): e0335122, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36472465

RESUMEN

Mechanical cleaning remains the standard of care for maintaining oral hygiene. However, mechanical cleaning is often augmented with active therapeutics that further promote oral health. A dentifrice, consisting of the "Dual Zinc plus Arginine" (DZA) technology, was found to be effective at controlling bacteria using in vitro laboratory studies, translating to clinical efficacy to deliver plaque and gingivitis reduction benefits. Here, we used biophysical analyses and confocal laser scanning microscopy to understand how a DZA dentifrice impacted the mechanical properties of dental plaque biofilms and determine if changes to biofilm rheology enhanced the removal of dental plaque. Using both uniaxial mechanical indentation and an adapted rotating-disc rheometry assay, it was found that DZA treatment compromised biofilm mechanical integrity, resulting in the biofilm being more susceptible to removal by shear forces compared to treatment with either arginine or zinc alone. Confocal laser scanning microscopy revealed that DZA treatment reduced the amount of extracellular polymeric slime within the biofilm, likely accounting for the reduced mechanical properties. We propose a model where arginine facilitates the entry of zinc into the biofilm, resulting in additive effects of the two activities toward dental plaque biofilms. Together, our results support the use of a dentifrice containing Dual Zinc plus Arginine as part of daily oral hygiene regimens. IMPORTANCE Mechanical removal of dental plaque is augmented with therapeutic compounds to promote oral health. A dentifrice containing the ingredients zinc and arginine has shown efficacy at reducing dental plaque both in vitro and in vivo. However, how these active compounds interact together to facilitate dental plaque removal is unclear. Here, we used a combination of biophysical analyses and microscopy to demonstrate that combined treatment with zinc and arginine targets the matrix of dental plaque biofilms, which destabilized the mechanical integrity of these microbial communities, making them more susceptible to removal by shear forces.


Asunto(s)
Placa Dental , Dentífricos , Humanos , Dentífricos/farmacología , Dentífricos/uso terapéutico , Arginina , Zinc/farmacología , Placa Dental/tratamiento farmacológico , Biopelículas
8.
ACS Appl Mater Interfaces ; 15(1): 677-683, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36562661

RESUMEN

Naringin, a natural product, can be used as a therapeutic agent due to its low systemic toxicity and negligible adverse effect. However, due to its hydrophobic nature and thereby low solubility, high-dose treatment is required when used for human therapy. Herein, we demonstrate the employment of a metal-organic framework (MOF) as a nontoxic loading carrier to encapsulate naringin, and the afforded nairngin@MOF composite can serve as a multifunctional bioplatform capable of treating Gram-positive bacteria and certain cancers by slowly and progressively releasing the encapsulated naringin as well as improving and modulating immune system functions through synergy between naringin and the MOF.


Asunto(s)
Flavanonas , Estructuras Metalorgánicas , Neoplasias , Humanos , Estructuras Metalorgánicas/química , Solubilidad
9.
Lasers Surg Med ; 44(6): 482-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22693075

RESUMEN

BACKGROUND AND OBJECTIVE: Goal was to evaluate the potential of in vivo optical coherence tomography (OCT) imaging to determine the response of patients with xerostomia to a dry mouth toothpaste versus fluoride toothpaste placebo. STUDY DESIGN/MATERIALS AND METHODS: Ten subjects with xerostomia participated in this double-blind, crossover, placebo-controlled study. After examination and OCT imaging, subjects used the first product for 15 days, followed by a 7-day washout period, and then they used the second product for 15 days. Data were acquired at 5-day intervals, also before and after the washout. RESULTS: Visual examination and tongue blade adhesion test did not reflect response to the product. Two imaging-based markers were identified: (i) In OCT images, epithelial thickness increased significantly (P < 0.05) after use of the dry mouth toothpaste, but did not change significantly (P > 0.05) after the use of a fluoride toothpaste and (2) Optical backscattering data showed progressive characteristic changes from baseline with use of the active product. CONCLUSIONS: In this pilot study using in vivo OCT imaging, it was possible to detect and measure oral epithelial response to the dry mouth product versus placebo in patients with xerostomia. CLINICAL IMPLICATIONS: This approach may permit site-specific assessment of xerostomia, individualized treatment planning and monitoring, and sequential mucosal mapping in patients with dry mouth.


Asunto(s)
Tomografía de Coherencia Óptica , Xerostomía/diagnóstico , Adulto , Estudios Cruzados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pastas de Dientes , Xerostomía/terapia
10.
Arch Oral Biol ; 126: 105126, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33872861

RESUMEN

OBJECTIVE: To investigate the effects of Dual Zinc plus Arginine formulations (aqueous solution and dentifrice) on tumor necrosis factor-alpha (TNF-α)-induced barrier dysfunction as well as on cell proliferation and migration in an in vitro gingival keratinocyte model. DESIGN: Gingival keratinocytes were seeded onto the membrane of a double-chamber system in the absence and presence of recombinant TNF-α and the formulations under investigation. The barrier function was assessed by determination of transepithelial electrical resistance (TER) and paracellular transport of fluorescein isothiocyanate (FITC)-dextran. The distribution of zonula occludens-1 (ZO-1) and occludin was visualized by immunofluorescence microscopy. The effects of the formulations on keratinocyte cell proliferation were determined using a fluorescent cell tracker dye, while a migration assay kit was used to investigate their effects on cell migration. RESULTS: Under conditions where TNF-α induces loss of keratinocyte barrier integrity, the Dual Zinc plus Arginine formulations (aqueous solution and dentifrice) protected the keratinocyte tight junction against the damages since they prevented the TNF-α-induced drop in TER and increase in FITC-dextran paracellular flux in the in vitro model. The treatment of keratinocytes with the formulations markedly mitigated the altered distribution of ZO-1 and occludin. Both formulations increased the proliferation of keratinocytes and alleviated the negative impact caused by TNF-α. Lastly, the formulations increased the migration capacity of keratinocytes. CONCLUSIONS: The ability of the Dual Zinc plus Arginine formulations to protect the barrier integrity of gingival keratinocytes from TNF-α-induced damage and to promote their proliferation and migration suggests that they may offer benefits for oral health.


Asunto(s)
Arginina , Factor de Necrosis Tumoral alfa , Arginina/farmacología , Proliferación Celular , Mucosa Intestinal , Queratinocitos , Zinc
11.
Front Cell Infect Microbiol ; 11: 784388, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805002

RESUMEN

Oral diseases are one of the most common pathologies affecting human health. These diseases are typically associated with dental plaque-biofilms, through either build-up of the biofilm or dysbiosis of the microbial community. Arginine can disrupt dental plaque-biofilms, and maintain plaque homeostasis, making it an ideal therapeutic to combat the development of oral disease. Despite our understanding of the actions of arginine towards dental plaque-biofilms, it is still unclear how or if arginine effects the mechanical integrity of the dental plaque-biofilm. Here we adapted a rotating-disc rheometry assay, a method used to quantify marine biofilm fouling, to study how arginine treatment of Streptococcus gordonii biofilms influences biofilm detachment from surfaces. We demonstrate that the assay is highly sensitive at quantifying the presence of biofilm and the detachment or rearrangement of the biofilm structure as a function of shear stress. We demonstrate that arginine treatment leads to earlier detachment of the biofilm, indicating that arginine treatment weakens the biofilm, making it more susceptible to removal by shear stresses. Finally, we demonstrate that the biofilm disrupting affect is specific to arginine, and not a general property of amino acids, as S. gordonii biofilms treated with either glycine or lysine had mechanical properties similar to untreated biofilms. Our results add to the understanding that arginine targets biofilms by multifaceted mechanisms, both metabolic and physical, further promoting the potential of arginine as an active compound in dentifrices to maintain oral health.


Asunto(s)
Microbiota , Streptococcus gordonii , Arginina , Biopelículas , Humanos
12.
J Oral Microbiol ; 13(1): 1910462, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33968313

RESUMEN

Background: Modulation of the commensal oral microbiota constitutes a promising preventive/therapeutic approach in oral healthcare. The use of prebiotics for maintaining/restoring the health-associated homeostasis of the oral microbiota has become an important research topic. Aims: This study hypothesised that in vitro 14-species oral biofilms can be modulated by (in)direct stimulation of beneficial/commensal bacteria with new potential prebiotic substrates tested at 1 M and 1%(w/v), resulting in more host-compatible biofilms with fewer pathogens, decreased virulence and less inflammatory potential. Methods: Established biofilms were repeatedly rinsed with N-acetyl-D-glucosamine, α-D-lactose, D-(+)-trehalose or D-(+)-raffinose at 1 M or 1%(w/v). Biofilm composition, metabolic profile, virulence and inflammatory potential were eventually determined. Results: Repeated rinsing caused a shift towards a more health-associated microbiological composition, an altered metabolic profile, often downregulated virulence gene expression and decreased the inflammatory potential on oral keratinocytes. At 1 M, the substrates had pronounced effects on all biofilm aspects, whereas at 1%(w/v) they had a pronounced effect on virulence gene expression and a limited effect on inflammatory potential. Conclusion: Overall, this study identified four new potential prebiotic substrates that exhibit different modulatory effects at two different concentrations that cause in vitro multi-species oral biofilms to become more host-compatible.

13.
J Oral Microbiol ; 12(1): 1798044, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32944154

RESUMEN

BACKGROUND AND OBJECTIVES: Porphyromonas gingivalis, a late colonizer of the periodontal biofilm, has been strongly associated with the chronic form of periodontitis. The aim of this study was to investigate the effects of a Dual Zinc plus Arginine formulation (aqueous solution and dentifrice) on the pathogenic properties of P. gingivalis and the barrier function of an in vitro gingival epithelium model. RESULTS: The Dual Zinc plus Arginine aqueous solution and dentifrice inhibited the hemolytic and proteolytic activities of P. gingivalis. The Dual Zinc plus Arginine aqueous solution and dentifrice enhanced the barrier function of an in vitro gingival epithelium model as determined by a time-dependent increase in transepithelial electrical resistance and decrease in paracellular permeability. This was associated with an increased immunolabeling of two important tight junction proteins: zonula occludens-1 and occludin. The deleterious effects of P. gingivalis on keratinocyte barrier function as well as the ability of the bacterium to translocate through a gingival epithelium model were attenuated in the presence of either Dual Zinc plus Arginine aqueous solution or dentifrice. CONCLUSIONS: The Dual Zinc plus Arginine formulation may offer benefits for patients affected by periodontal disease through its ability to attenuate the pathogenic properties of P. gingivalis and promote keratinocyte barrier function.

14.
J Am Dent Assoc ; 150(4S): S5-S13, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30797260

RESUMEN

BACKGROUND: Stannous fluoride (SnF2) is a compound present in many commercially available dentifrices; however, oxidative decomposition negatively impacts its efficacy. Stannous oxidation is often mitigated through the addition of complexing agents or sources of sacrificial stannous compounds. The authors have found that the addition of zinc phosphate significantly improved stannous stability more effectively than other stabilization methods. The authors evaluated the chemical speciation of stannous compounds within a variety of formulations using x-ray absorption near edge spectroscopy (XANES), a technique never used before in this manner. These data were compared and correlated with several antimicrobial experiments. METHODS: XANES data of various commercially available compounds and Colgate TotalSF were performed and analyzed against a library of reference compounds to determine the tin chemical speciation. The antibacterial assays used were salivary adenosine triphosphate, short-interval kill test, plaque glycolysis, and anaerobic biofilm models. RESULTS: XANES spectra showed a diverse distribution of tin species and varying degrees of SnF2 oxidation. In vitro antimicrobial assessment indicated significant differences in performance, which may be correlated to the differences in tin speciation and oxidation state. CONCLUSIONS: Driven by the excipient ingredients, SnF2 dentifrices contain a distribution of tin species in either the SnF2 or Sn(IV) oxidation state. The addition of zinc phosphate provided significant robustness against oxidation, which directly translated to greater efficacy against bacteria. PRACTICAL IMPLICATIONS: The choice of inactive ingredients in a dentifrice with active SnF2 can dramatically impact product stability.


Asunto(s)
Antiinfecciosos , Placa Dental , Dentífricos , Método Doble Ciego , Humanos , Fluoruros de Estaño , Pastas de Dientes
15.
ACS Appl Mater Interfaces ; 9(15): 13079-13091, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28332813

RESUMEN

A current effort in preventive dentistry is to inhibit surface attachment of bacteria using antibacterial polymer coatings on the tooth surface. For the antibacterial coatings, the physisorption of anionic and cationic polymers directly onto hydroxyapatite (HA) and saliva-treated HA surfaces was studied using quartz crystal microbalance, force spectroscopy, and atomic force microscopy. First, single species adsorption is shown to be stronger on HA surfaces than on silicon oxide surfaces for all polymers (i.e., Gantrez, sodium hyaluronate (NaHa), and poly(allylamine-co-allylguanidinium) (PAA-G75)). It is observed through pH dependence of Gantrez, NaHa, and PAA-G75 adsorption on HA surfaces that anionic polymers swell at high pH and collapse at low pH, whereas cationic polymers behave in the opposite fashion. Thicknesses of Gantrez, NaHa, and PAA-G75 are 52 nm (46 nm), 35 nm (11 nm), and 6 nm (54 nm) at pH 7 (3.5), respectively. Second, absorption of charged polymer is followed by absorption of the oppositely charged polymer. Upon exposure of the anionic polymer layers, Gantrez and NaHa, to the cationic polymer, PAA-G75, films collapse from 52 to 8 nm and 35 to 11 nm, respectively. This decrease in film thickness is attributed to the electrostatic cross-linking between anionic and cationic polymers. Third, for HA surfaces pretreated with artificial saliva (AS), the total thickness decreases from 25 to 16 nm upon exposure to PAA-G75. Force spectroscopy is used to further investigate the PAA-G75/AS coating. The results show that the interaction between a negatively charged colloidal bead and the AS surface is strongly repulsive, whereas PAA-G75/AS is attractive but varies across the surface. Additionally, AFM studies show that AS/HA is smooth with a RMS roughness of 1.7 nm, and PAA-G75-treated AS/HA is rough (RMS roughness of 5.4 nm) with patches of polymer distributed across the surface with an underlying coating. The high roughness of PAA-G75 treated AS/HA is attributed to the strong adsorption of the relatively small PAA-G75 onto the heterogeneously distributed negatively charged AS surface. In addition, uptake of PAA-G75 by pellicle layer (saliva-treated HA surface) is observed, and the adsorbed amount of PAA-G75 on/into pellicle layer is ∼2 times more than that on/into AS layer. These studies show that polymer adsorption onto HA and saliva-coated HA depends strongly on the polymer type and size and that there is an electrostatic interaction between polymer and saliva and/or oppositely charged polymers that stabilizes the coatings on HA. Lastly, assessing the viability of the adherent bacteria collected from the PAA-G75-coated surfaces showed a significant reduction (∼93%) in bacterial viability when compared to bacteria collected from untreated and Gantrez-coated HA. These results suggest the potential antimicrobial activity of PAA-G75.

16.
Tissue Eng Part C Methods ; 22(12): 1108-1117, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27846777

RESUMEN

Tissue-engineered oral mucosal equivalents (OME) are being increasingly used to measure toxicity, drug delivery, and to model oral diseases. Current OME mainly comprise normal oral keratinocytes (NOK) cultured on top of a normal oral fibroblasts-containing matrix. However, the commercial supply of NOK is limited, restricting widespread use of these mucosal models. In addition, NOK suffer from poor longevity and donor-to-donor variability. Therefore, we constructed, characterized, and tested the functionality of OME based on commercial TERT2-immortalized oral keratinocytes (FNB6) to produce a more readily available alternative to NOK-based OME. FNB6 OME cultured at an air-to-liquid interface for 14 days exhibited expression of differentiation markers cytokeratin 13 in the suprabasal layers and cytokeratin 14 in basal layer of the epithelium. Proliferating cells were restricted to the basal epithelium, and there was immuno-positive expression of E-cadherin confirming the presence of established cell-to-cell contacts. The histology and expression of these structural markers paralleled those observed in the normal oral mucosa and NOK-based models. On stimulation with TNFα and IL-1, FNB6 OME displayed a similar global gene expression profile to NOK-based OME, with increased expression of many common pro-inflammatory molecules such as chemokines (CXCL8), cytokines (IL-6), and adhesion molecules (ICAM-1) when analyzed by gene array and quantitative PCR. Similarly, pathway analysis showed that both FNB6 and NOK models initiated similar intracellular signaling on stimulation. Gene expression in FNB6 OME was more consistent than NOK-based OME that suffered from donor variation in response to stimuli. Mucosal equivalents based on immortalized FNB6 cells are accessible, reproducible and will provide an alternative animal experimental system for studying mucosal drug delivery systems, host-pathogen interactions, and drug-induced toxicity.


Asunto(s)
Biomarcadores/metabolismo , Fibroblastos/citología , Queratinocitos/citología , Mucosa Bucal/fisiología , Cadherinas/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Humanos , Técnicas In Vitro , Queratinocitos/metabolismo , Queratinas/metabolismo , Mucosa Bucal/citología
17.
J Agric Food Chem ; 58(8): 5034-41, 2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-20345098

RESUMEN

A mechanical tooth brushing device coupled to an atmosphere pressure ionization ion trap mass spectrometer (API-IT-MS) combination has been developed to study the influence of time and dilution on aroma release from a model dentifrice system. API-IT-MS response to nine commonly used dentifrice flavor components was initially studied. Linear regression models were developed based on an exponential dilution method (EDA) to permit quantification of these compounds. Good linear fits were generated for the majority of compounds (R(2) > 0.92). The threshold detection limits were also calculated, and they greatly depended on the type of aroma compound. A brushing device was then coupled to the API-IT-MS and used to monitor the release profile of three aroma components from a model dentifrice system at flavor concentrations ranging from 0.1 to 20 mg g(-1). Large differences in the aroma release patterns were observed for different compounds (limonene, menthone and cinnamic aldehyde) that depended on their physicochemical characteristics (vapor pressure and log P), and on additional factors such as aroma-matrix interactions. In addition, a linear increase in API-IT-MS response with increased flavor concentration up to 1 mg g(-1) flavor was observed, while at higher concentrations, e.g. between 1 and 20 mg g(-1), a plateau in response was noticed. This suggests that at concentrations above 1 mg g(-1) a transition from a purely dissolved state to an emulsified state occurred. This fact influenced the time-dependent characteristics of the release curve (I(max) and t(max)) for the three assayed flavor compounds.


Asunto(s)
Espectrometría de Masas/métodos , Odorantes , Higiene Bucal , Pastas de Dientes
18.
J Biomed Mater Res A ; 92(4): 1518-27, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19425078

RESUMEN

Bacterial adhesion to oral hard materials is dependent on various factors, for example, surface roughness and surface composition. In this study, bacteria retention on three oral hard substrates, hydroxyapatite (HAP), enamel, and polished enamel (p-enamel) were investigated. The surface morphology and roughness of the three substrates were measured by scanning probe microscopy. HAP had the roughest surface, followed by enamel and polished enamel. For each individual substrate type, the roughness was shown to increase with scan size up to 50 microm x 50 microm. For HAP and enamel, roughness decreased considerably after formation of a pellicle, while addition of polymer coating to the pellicle layer reduced roughness much less in comparison. Bacterial surface coverage was measured at 30 min, 3 h, and 24 h on both native and surface-modified substrates, which were coated with two different polycarboxylate-based polymers, Gantrez S97 and Carbopol 940. As a result, the polymer coated surfaces had reduced bacteria coverage compared with the native surfaces over all time points and substrates measured. The reduction is the combined effect of electrostatic repulsion and sequestering of Ca(2+) ions at the surface, which plays a key role in the initial adhesion of bacteria to enamel surfaces in models of plaque formation.


Asunto(s)
Adhesión Bacteriana/fisiología , Esmalte Dental , Placa Dental/metabolismo , Durapatita/química , Cemento de Policarboxilato/química , Materiales Biocompatibles Revestidos , Esmalte Dental/química , Esmalte Dental/microbiología , Esmalte Dental/ultraestructura , Película Dental/química , Placa Dental/microbiología , Humanos , Ensayo de Materiales , Microscopía de Fuerza Atómica , Saliva/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA