Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(25): e2121867119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35696587

RESUMEN

Raf Kinase Inhibitory Protein (RKIP) maintains cellular robustness and prevents the progression of diseases such as cancer and heart disease by regulating key kinase cascades including MAP kinase and protein kinase A (PKA). Phosphorylation of RKIP at S153 by Protein Kinase C (PKC) triggers a switch from inhibition of Raf to inhibition of the G protein coupled receptor kinase 2 (GRK2), enhancing signaling by the ß-adrenergic receptor (ß-AR) that activates PKA. Here we report that PKA-phosphorylated RKIP promotes ß-AR-activated PKA signaling. Using biochemical, genetic, and biophysical approaches, we show that PKA phosphorylates RKIP at S51, increasing S153 phosphorylation by PKC and thereby triggering feedback activation of PKA. The S51V mutation blocks the ability of RKIP to activate PKA in prostate cancer cells and to induce contraction in primary cardiac myocytes in response to the ß-AR activator isoproterenol, illustrating the functional importance of this positive feedback circuit. As previously shown for other kinases, phosphorylation of RKIP at S51 by PKA is enhanced upon RKIP destabilization by the P74L mutation. These results suggest that PKA phosphorylation at S51 may lead to allosteric changes associated with a higher-energy RKIP state that potentiates phosphorylation of RKIP at other key sites. This allosteric regulatory mechanism may have therapeutic potential for regulating PKA signaling in disease states.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Proteínas de Unión a Fosfatidiletanolamina , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Retroalimentación Fisiológica , Humanos , Masculino , Células PC-3 , Proteínas de Unión a Fosfatidiletanolamina/genética , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Fosforilación , Neoplasias de la Próstata/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 112(12): 3716-21, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25775607

RESUMEN

The dynamic interplay between kinases and substrates is crucial for the formation of catalytically committed complexes that enable phosphoryl transfer. However, a clear understanding on how substrates modulate kinase structural dynamics to control catalytic efficiency is still missing. Here, we used solution NMR spectroscopy to study the conformational dynamics of two complexes of the catalytic subunit of the cAMP-dependent protein kinase A with WT and R14 deletion phospholamban, a lethal human mutant linked to familial dilated cardiomyopathy. Phospholamban is a central regulator of heart muscle contractility, and its phosphorylation by protein kinase A constitutes a primary response to ß-adrenergic stimulation. We found that the single deletion of arginine in phospholamban's recognition sequence for the kinase reduces its binding affinity and dramatically reduces phosphorylation kinetics. Structurally, the mutant prevents the enzyme from adopting conformations and motions committed for catalysis, with concomitant reduction in catalytic efficiency. Overall, these results underscore the importance of a well-tuned structural and dynamic interplay between the kinase and its substrates to achieve physiological phosphorylation levels for proper Ca(2+) signaling and normal cardiac function.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas Quinasas Dependientes de AMP Cíclico/química , Mutación , Sitio Alostérico , Secuencia de Aminoácidos , Calcio/química , ATPasas Transportadoras de Calcio/química , Cardiomiopatía Dilatada/genética , Dominio Catalítico , Progresión de la Enfermedad , Eliminación de Gen , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Miocardio/enzimología , Fosforilación , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido , Termodinámica
3.
Biochem Biophys Res Commun ; 493(4): 1504-1509, 2017 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-28986260

RESUMEN

Tau misfolding has been implicated in a variety of tauopathies, including Alzheimer's disease. The microtubule binding domain of tau consists of four repeat segments (R1-R4), and aggregation of these segments leads to the formation of neurofibrillary tangles. Previous studies indicate that misfolded tau associates with anionic phospholipid membranes, invoking structural transformations that could play a role in aggregation. Here, we investigated the role of membrane surface charge on the binding affinity of individual tau repeat segments, and whether these segments exhibit lytic activity. We quantified the thermodynamics of this process in terms of the affinity (Kd), enthalpy (ΔH), entropy (ΔS), and change in specific heat capacity (ΔCp). While neutral membranes exhibited weak interactions with each tau repeat segment, segments R2 and R3 exhibited relatively strong binding with anionic membranes with favorable ΔS and a negative value of ΔCp. Calcein leakage assays show that each repeat segment displays lytic activity, but only upon the interaction with anionic membranes. Taken together, these results distinguish the relative selectivity for anionic membranes by each repeat segment and the degree of membrane disruption that results.


Asunto(s)
Proteínas tau/química , Secuencia de Aminoácidos , Calorimetría/métodos , Humanos , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Agregación Patológica de Proteínas , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Secuencias Repetitivas de Aminoácido , Tauopatías/etiología , Tauopatías/genética , Tauopatías/metabolismo , Termodinámica , Proteínas tau/genética , Proteínas tau/metabolismo
4.
Nat Chem Biol ; 9(2): 81-3, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23222886

RESUMEN

Engineering functional protein scaffolds capable of carrying out chemical catalysis is a major challenge in enzyme design. Starting from a noncatalytic protein scaffold, we recently generated a new RNA ligase by in vitro directed evolution. This artificial enzyme lost its original fold and adopted an entirely new structure with substantially enhanced conformational dynamics, demonstrating that a primordial fold with suitable flexibility is sufficient to carry out enzymatic function.


Asunto(s)
Catálisis , Ingeniería de Proteínas/métodos , ARN Ligasa (ATP)/química , Alanina/química , Secuencia de Aminoácidos , Dominio Catalítico , Evolución Molecular Dirigida/métodos , Enzimas/química , Humanos , Técnicas In Vitro , Espectroscopía de Resonancia Magnética , Metales/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación Proteica , Pliegue de Proteína
5.
Proc Natl Acad Sci U S A ; 108(17): 6969-74, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21471451

RESUMEN

Protein kinase A (PKA) is a ubiquitous phosphoryl transferase that mediates hundreds of cell signaling events. During turnover, its catalytic subunit (PKA-C) interconverts between three major conformational states (open, intermediate, and closed) that are dynamically and allosterically activated by nucleotide binding. We show that the structural transitions between these conformational states are minimal and allosteric dynamics encode the motions from one state to the next. NMR and molecular dynamics simulations define the energy landscape of PKA-C, with the substrate allowing the enzyme to adopt a broad distribution of conformations (dynamically committed state) and the inhibitors (high magnesium and pseudosubstrate) locking it into discrete minima (dynamically quenched state), thereby reducing the motions that allow turnover. These results unveil the role of internal dynamics in both kinase function and regulation.


Asunto(s)
Dominio Catalítico , Proteínas Quinasas Dependientes de AMP Cíclico/química , Modelos Moleculares , Regulación Alostérica , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Resonancia Magnética Nuclear Biomolecular , Relación Estructura-Actividad
6.
Proc Natl Acad Sci U S A ; 108(7): 2735-40, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21282613

RESUMEN

The regulatory interaction of phospholamban (PLN) with Ca(2+)-ATPase controls the uptake of calcium into the sarcoplasmic reticulum, modulating heart muscle contractility. A missense mutation in PLN cytoplasmic domain (R9C) triggers dilated cardiomyopathy in humans, leading to premature death. Using a combination of biochemical and biophysical techniques both in vitro and in live cells, we show that the R9C mutation increases the stability of the PLN pentameric assembly via disulfide bridge formation, preventing its binding to Ca(2+)-ATPase as well as phosphorylation by protein kinase A. These effects are enhanced under oxidizing conditions, suggesting that oxidative stress may exacerbate the cardiotoxic effects of the PLN(R9C) mutant. These results reveal a regulatory role of the PLN pentamer in calcium homeostasis, going beyond the previously hypothesized role of passive storage for active monomers.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Cardiomiopatía Dilatada/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mutación Missense/genética , Contracción Miocárdica/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Calcio/metabolismo , Cardiomiopatía Dilatada/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Contracción Miocárdica/fisiología , Estrés Oxidativo/genética , Fosforilación
7.
Biochemistry ; 51(51): 10186-96, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23205665

RESUMEN

The catalytic subunit of protein kinase A (PKA-C) is subject to several post- or cotranslational modifications that regulate its activity both spatially and temporally. Among those, N-myristoylation increases the kinase affinity for membranes and might also be implicated in substrate recognition and allosteric regulation. Here, we investigated the effects of N-myristoylation on the structure, dynamics, and conformational equilibrium of PKA-C using atomistic molecular dynamics simulations. We found that the myristoyl group inserts into the hydrophobic pocket and leads to a tighter packing of the A-helix against the core of the enzyme. As a result, the conformational dynamics of the A-helix are reduced and its motions are more coupled with the active site. Our simulations suggest that cation-π interactions among W30, R190, and R93 are responsible for coupling these motions. Two major conformations of the myristoylated N-terminus are the most populated: a long loop (LL conformation), similar to Protein Data Bank (PDB) entry 1CMK , and a helix-turn-helix structure (HTH conformation), similar to PDB entry 4DFX , which shows stronger coupling between the conformational dynamics observed at the A-helix and active site. The HTH conformation is stabilized by S10 phosphorylation of the kinase via ionic interactions between the protonated amine of K7 and the phosphate group on S10, further enhancing the dynamic coupling to the active site. These results support a role of N-myristoylation in the allosteric regulation of PKA-C.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ácido Mirístico/metabolismo , Dominio Catalítico , Simulación de Dinámica Molecular , Conformación Proteica , Estructura Secundaria de Proteína
8.
Nat Chem Biol ; 6(11): 821-8, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20890288

RESUMEN

Atomic resolution studies of protein kinases have traditionally been carried out in the inhibitory state, limiting our current knowledge on the mechanisms of substrate recognition and catalysis. Using NMR, X-ray crystallography and thermodynamic measurements, we analyzed the substrate recognition process of cAMP-dependent protein kinase (PKA), finding that entropy and protein dynamics play a prominent role. The nucleotide acts as a dynamic and allosteric activator by coupling the two lobes of apo PKA, enhancing the enzyme dynamics synchronously and priming it for catalysis. The formation of the ternary complex is entropically driven, and NMR spin relaxation data reveal that both substrate and PKA are dynamic in the closed state. Our results show that the enzyme toggles between open and closed states, which indicates that a conformational selection rather than an induced-fit mechanism governs substrate recognition.


Asunto(s)
Biocatálisis , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Simulación de Dinámica Molecular , Adenilil Imidodifosfato/metabolismo , Regulación Alostérica , Apoenzimas/química , Apoenzimas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Entropía , Cinética , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato , Volumetría
9.
Adv Exp Med Biol ; 992: 35-62, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23076578

RESUMEN

In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy.


Asunto(s)
Marcaje Isotópico/métodos , Proteínas de la Membrana/química , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas de la Membrana/aislamiento & purificación
10.
J Biol Inorg Chem ; 16(8): 1197-204, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21735272

RESUMEN

Metal centers have been widely used to nucleate secondary structures in linear peptides. However, very few examples have been reported for peptide/organometal complexes. Here, we illustrate the use of organotin compounds as nucleation centers for secondary structures of linear peptide inhibitors of α-amylase. Specifically, we utilized methyl-substituted tin compounds to template short type I ß-turns similar to the binding loop of tendamistat, the natural inhibitor of the enzyme, which are able to bind and inhibit α-amylase. We show that enzyme activity is inhibited by neither the unstructured peptide nor the organotin compounds, but rather the peptide/organotin complex, which inhibits the enzyme with K (i) ~ 0.5 µM. The results delineate a strategy to use organometallic compounds to drive the active conformation in small linear peptides.


Asunto(s)
Modelos Moleculares , Compuestos Orgánicos de Estaño/química , Péptidos/química , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Cinética , Conformación Molecular , Neuropéptidos/química , Péptidos/síntesis química , Conformación Proteica
11.
Proc Natl Acad Sci U S A ; 105(2): 506-11, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18178622

RESUMEN

Allosteric signaling in proteins requires long-range communication mediated by highly conserved residues, often triggered by ligand binding. In this article, we map the allosteric network in the catalytic subunit of protein kinase A using NMR spectroscopy. We show that positive allosteric cooperativity is generated by nucleotide and substrate binding during the transitions through the major conformational states: apo, intermediate, and closed. The allosteric network is disrupted by a single site mutation (Y204A), which also decouples the cooperativity of ligand binding. Because protein kinase A is the prototype for the entire kinome, these findings may serve as a paradigm for describing long-range coupling in other protein kinases.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/química , Adenilil Imidodifosfato , Sitio Alostérico , Dominio Catalítico , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/química , Cinética , Ligandos , Espectroscopía de Resonancia Magnética , Conformación Molecular , Conformación de Ácido Nucleico , Nucleótidos/química , Unión Proteica , Conformación Proteica , Transducción de Señal
12.
J Am Chem Soc ; 131(40): 14138-9, 2009 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-19764746

RESUMEN

We present a procedure that supports the acquisition of (1)H-(15)N residual dipolar coupling (RDC) values for individual subunits in binary or ternary protein assemblies from a single experimental sample. Our method relies on asymmetric labeling of each subunit with the following scheme: species A uniformly with (15)N, species B uniformly with (15)N and (13)C, and species C uniformly with (15)N but selectively with (13)C' or (13)C(alpha). Because only a single sample is required, the approach obviates the need for preparing multiple samples and eliminates potential errors introduced from differences in sample conditions. Because numerous biological processes rely on protein assemblies or transient interactions, this method should be well suited for a wide range of future applications.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Isótopos de Carbono , Isótopos de Nitrógeno , Conformación Proteica
13.
J Biol Inorg Chem ; 14(8): 1219-25, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19626349

RESUMEN

We investigated the time dependence of the degradation of three alkyltin derivatives by a nine amino acid linear peptide (I(1)LGCWCYLR(9)) containing a CXC motif derived from the primary sequence of stannin, a membrane protein involved in alkyltin toxicity. We monitored the reaction kinetics using the intrinsic fluorescence of the tryptophan residue in position 5 of the peptide and found that all of the alkyltins analyzed are progressively degraded to dialkyl derivatives, following a pseudoenzymatic reaction mechanism. The end point of the reactions is the formation of a covalent complex between the disubstituted alkyltin and the peptide cysteines. These data agree with the speciation profiles proposed for polysubstituted alkyltins in the environment and reveal a possible biotic degradation pathway for these toxic compounds.


Asunto(s)
Compuestos Orgánicos de Estaño/química , Péptidos/química , Estaño/química , Tolueno/análogos & derivados , Animales , Remoción de Radical Alquila , Humanos , Estructura Molecular , Neuropéptidos/química , Neuropéptidos/genética , Compuestos Orgánicos de Estaño/toxicidad , Péptidos/genética , Espectrometría de Fluorescencia , Espectrometría de Masa por Ionización de Electrospray , Tolueno/química
14.
Protein Expr Purif ; 64(2): 231-6, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19027069

RESUMEN

Extensive X-ray crystallographic studies carried out on the catalytic-subunit of protein kinase A (PKA-C) enabled the atomic characterization of inhibitor and/or substrate peptide analogues trapped at its active site. Yet, the structural and dynamic transitions of these peptides from the free to the bound state are missing. These conformational transitions are central to understanding molecular recognition and the enzymatic cycle. NMR spectroscopy allows one to study these phenomena under functionally relevant conditions. However, the amounts of isotopically labeled peptides required for this technique present prohibitive costs for solid-phase peptide synthesis. To enable NMR studies, we have optimized both expression and purification of isotopically enriched substrate/inhibitor peptides using a recombinant fusion protein system. Three of these peptides correspond to the cytoplasmic regions of the wild-type and lethal mutants of the membrane protein phospholamban, while the fourth peptide correspond to the binding epitope of the heat-stable protein kinase inhibitor (PKI(5-24)). The target peptides were fused to the maltose binding protein (MBP), which is further purified using a His(6) tag approach. This convenient protocol allows for the purification of milligram amounts of peptides necessary for NMR analysis.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Fragmentos de Péptidos/química , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Dominio Catalítico , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Marcaje Isotópico , Espectroscopía de Resonancia Magnética , Proteínas de Unión a Maltosa , Modelos Genéticos , Datos de Secuencia Molecular , Fragmentos de Péptidos/aislamiento & purificación , Fragmentos de Péptidos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato
15.
J Am Chem Soc ; 130(25): 7818-9, 2008 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-18512910

RESUMEN

We present a procedure for isolating subspectra corresponding to individual protein or peptide components in a ternary mixture or complex. Each of the three-component species is labeled differently: species A uniformly with 15N, species B uniformly with 15N and 13C, and species C uniformly with 15N but selectively with 13C' or 13Calpha. By using the dual carbon label selective HSQC (DCLS-HSQC) pulse sequence and exploiting differences in 1J 15N-13C coupling patterns to filter selected 15N resonances from detection during a constant time period, a subspectrum from each species can be generated from three spectra acquired from a single sample. Many important biological pathways involve dynamic interactions among members of multicomponent protein assemblies, and this approach offers a powerful way to monitor such processes.


Asunto(s)
Marcaje Isotópico/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/análisis , Isótopos de Carbono/química , Hidrógeno/química , Isótopos de Nitrógeno/química , Proteínas/química
16.
J Am Chem Soc ; 130(38): 12604-5, 2008 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-18729522

RESUMEN

Methanobactin (mb) is a small copper-binding peptide produced by methanotrophic bacteria and is intimately involved in both their copper metabolism and their role in the global carbon cycle. The structure for methanobactin comprises seven amino acids plus two chromophoric residues that appear unique to methanobactin. In a previously published structure, both chromophoric residues contain a thiocarbonyl attached to a hydroxyimidazolate ring. In addition, one is attached to a pyrrolidine ring, while the other is attached to an isopropyl ester. A published X-ray determined structure for methanobactin shows these two chromophoric groups forming an N2S2 binding site for a single Cu(I) ion with a distorted tetrahedral geometry. In this report we show that NMR, mass spectrometry, and chemical data reveal a chemical structure that is significantly different than the previously published one. Specifically, the 1H and 13C NMR assignments are inconsistent with an N-terminal isopropyl ester and point instead to a 3-methylbutanoyl group. Our data also indicate that oxazolone rings instead of hydroxyimidazolate rings form the core of the two chromophoric residues. Because these rings are directly involved in the binding of Cu(I) and other metals by methanobactin and are likely involved in the many chemical activities displayed by methanobactin, their correct identity is central to developing an accurate and detailed understanding of methanobactin's many chemical and biological roles. For example, the oxazolone rings make methanobactin structurally more similar to other bacterially produced bactins and siderophores and suggest pathways for its biosynthesis.


Asunto(s)
Imidazoles/química , Oligopéptidos/química , Secuencia de Aminoácidos , Methylosinus trichosporium/química , Methylosinus trichosporium/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Oligopéptidos/biosíntesis , Oxazolona/química , Espectrometría de Masa por Ionización de Electrospray/métodos
17.
Structure ; 22(12): 1735-1743, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25458836

RESUMEN

Conformational fluctuations play a central role in enzymatic catalysis. However, it is not clear how the rates and the coordination of the motions affect the different catalytic steps. Here, we used NMR spectroscopy to analyze the conformational fluctuations of the catalytic subunit of the cAMP-dependent protein kinase (PKA-C), a ubiquitous enzyme involved in a myriad of cell signaling events. We found that the wild-type enzyme undergoes synchronous motions involving several structural elements located in the small lobe of the kinase, which is responsible for nucleotide binding and release. In contrast, a mutation (Y204A) located far from the active site desynchronizes the opening and closing of the active cleft without changing the enzyme's structure, rendering it catalytically inefficient. Since the opening and closing motions govern the rate-determining product release, we conclude that optimal and coherent conformational fluctuations are necessary for efficient turnover of protein kinases.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Catálisis , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Conformación Proteica
18.
J Magn Reson ; 214(1): 103-10, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22134225

RESUMEN

Building on a recent method by Matthews and co-workers [1], we developed a new and efficient algorithm to assign methyl resonances from sparse and ambiguous NMR data. The new algorithm (FLAMEnGO: Fuzzy Logic Assignment of MEthyl GrOups) uses Monte Carlo sampling in conjunction with fuzzy logic to obtain the assignment of methyl resonances at high fidelity. Furthermore, we demonstrate that the inclusion of paramagnetic relaxation enhancement (PRE) data in the assignment strategy increases the percentage of correct assignments with sparse NOE data. Using synthetic tests and experimental data we show that this new approach provides up to ∼80% correct assignments with only 30% of methyl-methyl NOE data. In the experimental case of ubiquitin, PRE data from two spin labeled sites improve the percentage of assigned methyl groups up to ∼91%. This new strategy promises to further expand methyl group NMR spectroscopy to very large macromolecular systems.


Asunto(s)
Algoritmos , Lógica Difusa , Espectroscopía de Resonancia Magnética/métodos , Metano/análogos & derivados , Ubiquitina/análisis , Ubiquitina/química , Metano/análisis , Metano/química , Reconocimiento de Normas Patrones Automatizadas/métodos
19.
Adv Protein Chem Struct Biol ; 87: 363-89, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22607761

RESUMEN

The catalytic subunit of cAMP-dependent protein kinase A (PKA-C) is an exquisite example of a single molecule allosteric enzyme, where classical and modern views of allosteric signaling merge. In this chapter, we describe the mapping of PKA-C conformational dynamics and allosteric signaling in the free and bound states using a combination of NMR spectroscopy and molecular dynamics simulations. We show that ligand binding affects the enzyme's conformational dynamics, shaping the free-energy landscape toward the next stage of the catalytic cycle. While nucleotide and substrate binding enhance the enzyme's conformational entropy and define dynamically committed states, inhibitor binding attenuates the internal dynamics in favor of enthalpic interactions and delineates dynamically quenched states. These studies support a central role of conformational dynamics in many aspects of enzymatic turnover and suggest future avenues for controlling enzymatic function.


Asunto(s)
Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/química , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Regulación Alostérica , Sitio Alostérico , Ligandos
20.
J Magn Reson ; 219: 75-82, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22621977

RESUMEN

NMR relaxation methods probe biomolecular motions over a wide range of timescales. In particular, the rotating frame spin-lock R(1ρ) and Carr-Purcell-Meiboom-Gill (CPMG) R(2) experiments are commonly used to characterize µs to ms dynamics, which play a critical role in enzyme folding and catalysis. In an effort to complement these approaches, we introduced the Heteronuclear Adiabatic Relaxation Dispersion (HARD) method, where dispersion in rotating frame relaxation rate constants (longitudinal R(1ρ) and transverse R(2ρ)) is created by modulating the shape and duration of adiabatic full passage (AFP) pulses. Previously, we showed the ability of the HARD method to detect chemical exchange dynamics in the fast exchange regime (k(ex)∼10(4)-10(5) s(-1)). In this article, we show the sensitivity of the HARD method to slower exchange processes by measuring R(1ρ) and R(2ρ) relaxation rates for two soluble proteins (ubiquitin and 10C RNA ligase). One advantage of the HARD method is its nominal dependence on the applied radio frequency field, which can be leveraged to modulate the dispersion in the relaxation rate constants. In addition, we also include product operator simulations to define the dynamic range of adiabatic R(1ρ) and R(2ρ) that is valid under all exchange regimes. We conclude from both experimental observations and simulations that this method is complementary to CPMG-based and rotating frame spin-lock R(1ρ) experiments to probe conformational exchange dynamics for biomolecules. Finally, this approach is germane to several NMR-active nuclei, where relaxation rates are frequency-offset independent.


Asunto(s)
Algoritmos , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Proteínas/ultraestructura , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA