Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 46(20): 10855-10869, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30285153

RESUMEN

Homologous recombination is essential to genome maintenance, and also to genome diversification. In virtually all organisms, homologous recombination depends on the RecA/Rad51-family recombinases, which catalyze ATP-dependent formation of homologous joints-critical intermediates in homologous recombination. RecA/Rad51 binds first to single-stranded (ss) DNA at a damaged site to form a spiral nucleoprotein filament, after which double-stranded (ds) DNA interacts with the filament to search for sequence homology and to form consecutive base pairs with ssDNA ('pairing'). How sequence homology is recognized and what exact role filament formation plays remain unknown. We addressed the question of whether filament formation is a prerequisite for homologous joint formation. To this end we constructed a nonpolymerizing (np) head-to-tail-fused RecA dimer (npRecA dimer) and an npRecA monomer. The npRecA dimer bound to ssDNA, but did not form continuous filaments upon binding to DNA; it formed beads-on-string structures exclusively. Although its efficiency was lower, the npRecA dimer catalyzed the formation of D-loops (a type of homologous joint), whereas the npRecA monomer was completely defective. Thus, filament formation contributes to efficiency, but is not essential to sequence-homology recognition and pairing, for which a head-to-tail dimer form of RecA protomer is required and sufficient.


Asunto(s)
ADN de Cadena Simple/metabolismo , Recombinación Homóloga , Multimerización de Proteína , Rec A Recombinasas/fisiología , Emparejamiento Base/fisiología , Catálisis , ADN de Cadena Simple/química , Escherichia coli , Inestabilidad Genómica/genética , Recombinación Homóloga/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Multimerización de Proteína/fisiología , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo
2.
Nucleic Acids Res ; 41(6): 3576-87, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23393192

RESUMEN

DNA repair helicases function in the cell to separate DNA duplexes or remodel nucleoprotein complexes. These functions are influenced by sensing and signaling; the cellular pool of a DNA helicase may contain subpopulations of enzymes carrying different post-translational modifications and performing distinct biochemical functions. Here, we report a novel experimental strategy, single-molecule sorting, which overcomes difficulties associated with comprehensive analysis of heterologously modified pool of proteins. This methodology was applied to visualize human DNA helicase F-box-containing DNA helicase (FBH1) acting on the DNA structures resembling a stalled or collapsed replication fork and its interactions with RAD51 nucleoprotein filament. Individual helicase molecules isolated from human cells with their native post-translational modifications were analyzed using total internal reflection fluorescence microscopy. Separation of the activity trajectories originated from ubiquitylated and non-ubiquitylated FBH1 molecules revealed that ubiquitylation affects FBH1 interaction with the RAD51 nucleoprotein filament, but not its translocase and helicase activities.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Ubiquitinación , Sitios de Unión , ADN/metabolismo , ADN Helicasas/química , Replicación del ADN , Proteínas de Unión al ADN/química , Células HEK293 , Humanos , Estructura Terciaria de Proteína , Recombinasa Rad51/metabolismo
3.
Sci Rep ; 12(1): 16049, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180523

RESUMEN

As the sister group to bilaterians, cnidarians stand in a unique phylogenetic position that provides insight into evolutionary aspects of animal development, physiology, and behavior. While cnidarians are classified into two types, sessile polyps and free-swimming medusae, most studies at the cellular and molecular levels have been conducted on representative polyp-type cnidarians and have focused on establishing techniques of genetic manipulation. Recently, gene knockdown by delivery of short hairpin RNAs into eggs via electroporation has been introduced in two polyp-type cnidarians, Nematostella vectensis and Hydractinia symbiolongicarpus, enabling systematic loss-of-function experiments. By contrast, current methods of genetic manipulation for most medusa-type cnidarians, or jellyfish, are quite limited, except for Clytia hemisphaerica, and reliable techniques are required to interrogate function of specific genes in different jellyfish species. Here, we present a method to knock down target genes by delivering small interfering RNA (siRNA) into fertilized eggs via electroporation, using the hydrozoan jellyfish, Clytia hemisphaerica and Cladonema paciificum. We show that siRNAs targeting endogenous GFP1 and Wnt3 in Clytia efficiently knock down gene expression and result in known planula phenotypes: loss of green fluorescence and defects in axial patterning, respectively. We also successfully knock down endogenous Wnt3 in Cladonema by siRNA electroporation, which circumvents the technical difficulty of microinjecting small eggs. Wnt3 knockdown in Cladonema causes gene expression changes in axial markers, suggesting a conserved Wnt/ß-catenin-mediated pathway that controls axial polarity during embryogenesis. Our gene-targeting siRNA electroporation method is applicable to other animals, including and beyond jellyfish species, and will facilitate the investigation and understanding of myriad aspects of animal development.


Asunto(s)
Hidrozoos , Escifozoos , Animales , Electroporación , Técnicas de Silenciamiento del Gen , Hidrozoos/metabolismo , Filogenia , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Escifozoos/genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA