Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Lancet Infect Dis ; 18(12): 1350-1359, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30342828

RESUMEN

BACKGROUND: Global roll-out of rapid molecular assays is revolutionising the diagnosis of rifampicin resistance, predictive of multidrug-resistance, in tuberculosis. However, 30% of the multidrug-resistant (MDR) strains in an eSwatini study harboured the Ile491Phe mutation in the rpoB gene, which is associated with poor rifampicin-based treatment outcomes but is missed by commercial molecular assays or scored as susceptible by phenotypic drug-susceptibility testing deployed in South Africa. We evaluated the presence of Ile491Phe among South African tuberculosis isolates reported as isoniazid-monoresistant according to current national testing algorithms. METHODS: We screened records of 37 644 Mycobacterium tuberculosis positive cultures from four South African provinces, diagnosed at the National Health Laboratory Service-Dr George Mukhari Tertiary Laboratory, to identify isolates with rifampicin sensitivity and isoniazid resistance according to Xpert MTB/RIF, GenoType MTBDRplus, and BACTEC MGIT 960. Of 1823 isolates that met these criteria, 277 were randomly selected and screened for Ile491Phe with multiplex allele-specific PCR and Sanger sequencing of rpoB. Ile491Phe-positive strains (as well as 17 Ile491Phe-bearing isolates from the eSwatini study) were then tested by Deeplex-MycTB deep sequencing and whole-genome sequencing to evaluate their patterns of extensive resistance, transmission, and evolution. FINDINGS: Ile491Phe was identified in 37 (15%) of 249 samples with valid multiplex allele-specific PCR and sequencing results, thus reclassifying them as MDR. All 37 isolates were additionally identified as genotypically resistant to all first-line drugs by Deeplex-MycTB. Six of the South African isolates harboured four distinct mutations potentially associated with decreased bedaquiline sensitivity. Consistent with Deeplex-MycTB genotypic profiles, whole-genome sequencing revealed concurrent silent spread in South Africa of a MDR tuberculosis strain lineage extending from the eSwatini outbreak and at least another independently emerged Ile491Phe-bearing lineage. Whole-genome sequencing further suggested acquisition of mechanisms compensating for the Ile491Phe fitness cost, and of additional bedaquiline resistance following the introduction of this drug in South Africa. INTERPRETATION: A substantial number of MDR tuberculosis cases harbouring the Ile491Phe mutation in the rpoB gene in South Africa are missed by current diagnostic strategies, resulting in ineffective first-line treatment, continued amplification of drug resistance, and concurrent silent spread in the community. FUNDING: VLIR-UOS, National Research Foundation (South Africa), and INNOVIRIS.


Asunto(s)
Errores Diagnósticos/estadística & datos numéricos , Brotes de Enfermedades , Técnicas de Genotipaje/métodos , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium tuberculosis/aislamiento & purificación , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Adulto , ARN Polimerasas Dirigidas por ADN/genética , Femenino , Frecuencia de los Genes , Humanos , Masculino , Persona de Mediana Edad , Proteínas Mutantes/genética , Mutación Missense , Reacción en Cadena de la Polimerasa , Sensibilidad y Especificidad , Análisis de Secuencia de ADN , Sudáfrica/epidemiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA