Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 67(2): 194-202.e6, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28712723

RESUMEN

Mislocalized tail-anchored (TA) proteins of the outer mitochondrial membrane are cleared by a newly identified quality control pathway involving the conserved eukaryotic protein Msp1 (ATAD1 in humans). Msp1 is a transmembrane AAA-ATPase, but its role in TA protein clearance is not known. Here, using purified components reconstituted into proteoliposomes, we show that Msp1 is both necessary and sufficient to drive the ATP-dependent extraction of TA proteins from the membrane. A crystal structure of the Msp1 cytosolic region modeled into a ring hexamer suggests that active Msp1 contains a conserved membrane-facing surface adjacent to a central pore. Structure-guided mutagenesis of the pore residues shows that they are critical for TA protein extraction in vitro and for functional complementation of an msp1 deletion in yeast. Together, these data provide a molecular framework for Msp1-dependent extraction of mislocalized TA proteins from the outer mitochondrial membrane.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Hidrólisis , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Modelos Moleculares , Mutación , Dominios Proteicos , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad
2.
Nature ; 477(7362): 61-6, 2011 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-21866104

RESUMEN

Tail-anchored (TA) membrane proteins destined for the endoplasmic reticulum are chaperoned by cytosolic targeting factors that deliver them to a membrane receptor for insertion. Although a basic framework for TA protein recognition is now emerging, the decisive targeting and membrane insertion steps are not understood. Here we reconstitute the TA protein insertion cycle with purified components, present crystal structures of key complexes between these components and perform mutational analyses based on the structures. We show that a committed targeting complex, formed by a TA protein bound to the chaperone ATPase Get3, is initially recruited to the membrane through an interaction with Get2. Once the targeting complex has been recruited, Get1 interacts with Get3 to drive TA protein release in an ATPase-dependent reaction. After releasing its TA protein cargo, the now-vacant Get3 recycles back to the cytosol concomitant with ATP binding. This work provides a detailed structural and mechanistic framework for the minimal TA protein insertion cycle.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Adenosina Trifosfato/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/química , Modelos Moleculares , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
3.
Nature ; 466(7310): 1120-4, 2010 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-20676083

RESUMEN

Hundreds of proteins are inserted post-translationally into the endoplasmic reticulum (ER) membrane by a single carboxy-terminal transmembrane domain (TMD). During targeting through the cytosol, the hydrophobic TMD of these tail-anchored (TA) proteins requires constant chaperoning to prevent aggregation or inappropriate interactions. A central component of this targeting system is TRC40, a conserved cytosolic factor that recognizes the TMD of TA proteins and delivers them to the ER for insertion. The mechanism that permits TRC40 to find and capture its TA protein cargos effectively in a highly crowded cytosol is unknown. Here we identify a conserved three-protein complex composed of Bat3, TRC35 and Ubl4A that facilitates TA protein capture by TRC40. This Bat3 complex is recruited to ribosomes synthesizing membrane proteins, interacts with the TMDs of newly released TA proteins, and transfers them to TRC40 for targeting. Depletion of the Bat3 complex allows non-TRC40 factors to compete for TA proteins, explaining their mislocalization in the analogous yeast deletion strains. Thus, the Bat3 complex acts as a TMD-selective chaperone that effectively channels TA proteins to the TRC40 insertion pathway.


Asunto(s)
Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Ribosomas/metabolismo , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Transporte de Proteínas , Partícula de Reconocimiento de Señal/metabolismo , Ubiquitinas/metabolismo
4.
Nature ; 461(7262): 361-6, 2009 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-19675567

RESUMEN

Targeting of newly synthesized membrane proteins to the endoplasmic reticulum is an essential cellular process. Most membrane proteins are recognized and targeted co-translationally by the signal recognition particle. However, nearly 5% of membrane proteins are 'tail-anchored' by a single carboxy-terminal transmembrane domain that cannot access the co-translational pathway. Instead, tail-anchored proteins are targeted post-translationally by a conserved ATPase termed Get3. The mechanistic basis for tail-anchored protein recognition or targeting by Get3 is not known. Here we present crystal structures of yeast Get3 in 'open' (nucleotide-free) and 'closed' (ADP.AlF(4)(-)-bound) dimer states. In the closed state, the dimer interface of Get3 contains an enormous hydrophobic groove implicated by mutational analyses in tail-anchored protein binding. In the open state, Get3 undergoes a striking rearrangement that disrupts the groove and shields its hydrophobic surfaces. These data provide a molecular mechanism for nucleotide-regulated binding and release of tail-anchored proteins during their membrane targeting by Get3.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Compuestos de Aluminio/química , Compuestos de Aluminio/metabolismo , Cristalografía por Rayos X , Fluoruros/química , Fluoruros/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/química , Methanococcus , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Canales de Translocación SEC , Relación Estructura-Actividad
5.
J Struct Biol ; 165(1): 10-8, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18929667

RESUMEN

We describe a detailed study of the RhoA-binding epitope of the GAP domain of Graf, including the determination of the thermodynamic and kinetic parameters of the interaction of wild-type domain, and of its 15 single-site mutants, with cognate GTPases. We show that residues important for the structural integrity of the Arg-finger loop are critical for binding Rho and for the catalytic activity of GAP, but GTPase selectivity appears to be modulated by a much more subtle interplay of electrostatic and hydrophobic interactions involving residues on the periphery of the main interface. The eight residues targeted in this study are involved in three distinct patches on the surface, two of which appear to interact with highly conserved regions of the GTPase, while the third plays a role in GTPase selectivity.


Asunto(s)
Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/metabolismo , Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/metabolismo , Secuencia de Aminoácidos , Proteínas Activadoras de GTPasa/genética , Guanosina Trifosfato/metabolismo , Humanos , Datos de Secuencia Molecular , Alineación de Secuencia , Termodinámica , Proteína de Unión al GTP rhoA/genética
6.
Curr Opin Struct Biol ; 51: 195-202, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30173121

RESUMEN

Many tail-anchored (TA) membrane proteins are targeted to and inserted into the endoplasmic reticulum (ER) by the `guided entry of tail-anchored proteins' (GET) pathway. This post-translational pathway uses transmembrane-domain selective cytosolic chaperones for targeting, and a dedicated membrane protein complex for insertion. The past decade has seen rapid progress towards defining the molecular basis of TA protein biogenesis by the GET pathway. Here we review the mechanisms underlying each step of the pathway, emphasizing recent structural work and highlighting key questions that await future studies.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Humanos , Proteínas de la Membrana/biosíntesis , Modelos Moleculares , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica , Multimerización de Proteína , Transporte de Proteínas , Relación Estructura-Actividad
7.
J Mol Biol ; 357(2): 621-31, 2006 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-16445939

RESUMEN

Miller-Dieker lissencephaly, or "smooth-brain" is a debilitating genetic developmental syndrome of the cerebral cortex, and is linked to mutations in the Lis1 gene. The LIS1 protein contains a so-called LisH motif at the N terminus, followed by a coiled-coil region and a seven WD-40 repeat forming beta-propeller structure. In vivo and in vitro, LIS1 is a dimer, and the dimerization is mediated by the N-terminal fragment and is essential for the protein's biological function. The recently determined crystal structure of the murine LIS1 N-terminal fragment encompassing residues 1-86 (N-LIS1) revealed that the LisH motif forms a tightly associated homodimer with a four-helix antiparallel bundle core, while the parallel coiled-coil situated downstream is stabilized by three canonical heptad repeats. This homodimer is uniquely asymmetric because of a distinct kink in one of the helices. Because the LisH motif is widespread among many proteins, some of which are implicated in human diseases, we investigated in detail the mechanism of N-LIS1 dimerization. We found that dimerization is dependent on both the LisH motif and the residues downstream of it, including the first few turns of the helix. We also have found that the coiled-coil does not contribute to dimerization, but instead is very labile and can adopt both supercoiled and helical conformations. These observations suggest that the presence of the LisH motif alone is not sufficient for high-affinity homodimerization and that other structural elements are likely to play an important role in this large family of proteins. The observed lability of the coiled-coil fragment in LIS1 is most likely of functional importance.


Asunto(s)
Secuencias de Aminoácidos , Proteínas Asociadas a Microtúbulos/química , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , 1-Alquil-2-acetilglicerofosfocolina Esterasa , Animales , Dimerización , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Mutación , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Desnaturalización Proteica , Solventes , Termodinámica
8.
Structure ; 12(2): 301-6, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14962390

RESUMEN

The LcrV protein (V-antigen) is a multifunctional virulence factor in Yersinia pestis, the causative agent of plague. LcrV regulates the translocation of cytotoxic effector proteins from the bacterium into the cytosol of mammalian cells via a type III secretion system, possesses antihost activities of its own, and is also an active and passive mediator of resistance to disease. Although a crystal structure of this protein has been actively sought for better understanding of its role in pathogenesis, the wild-type LcrV was found to be recalcitrant to crystallization. We employed a surface entropy reduction mutagenesis strategy to obtain crystals of LcrV that diffract to 2.2 A and determined its structure. The refined model reveals a dumbbell-like molecule with a novel fold that includes an unexpected coiled-coil motif, and provides a detailed three-dimensional roadmap for exploring structure-function relationships in this essential virulence determinant.


Asunto(s)
Antígenos Bacterianos/química , Proteínas de la Membrana Bacteriana Externa/química , Mutagénesis , Yersinia pestis/química , Cristalografía por Rayos X , Peste/etiología , Proteínas Citotóxicas Formadoras de Poros , Yersiniosis/etiología
9.
Science ; 347(6226): 1152-5, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25745174

RESUMEN

Tail-anchored (TA) proteins are a physiologically important class of membrane proteins targeted to the endoplasmic reticulum by the conserved guided-entry of TA proteins (GET) pathway. During transit, their hydrophobic transmembrane domains (TMDs) are chaperoned by the cytosolic targeting factor Get3, but the molecular nature of the functional Get3-TA protein targeting complex remains unknown. We reconstituted the physiologic assembly pathway for a functional targeting complex and showed that it comprises a TA protein bound to a Get3 homodimer. Crystal structures of Get3 bound to different TA proteins showed an α-helical TMD occupying a hydrophobic groove that spans the Get3 homodimer. Our data elucidate the mechanism of TA protein recognition and shielding by Get3 and suggest general principles of hydrophobic domain chaperoning by cellular targeting factors.


Asunto(s)
Adenosina Trifosfatasas/química , Factores de Intercambio de Guanina Nucleótido/química , Proteínas de la Membrana/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/metabolismo , Cristalografía por Rayos X , Citosol/enzimología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Acta Biochim Pol ; 58(2): 243-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21666888

RESUMEN

Intracellular signaling cascades induced by Wnt proteins play a key role in developmental processes and are implicated in cancerogenesis. It is still unclear how the cell determines which of the three possible Wnt response mechanisms should be activated, but the decision process is most likely dependent on Dishevelled proteins. Dishevelled family members interact with many diverse targets, however, molecular mechanisms underlying these binding events have not been comprehensively described so far. Here, we investigated the specificity of the PDZ domain from human Dishevelled-2 using C-terminal phage display, which led us to identification of a leucine-rich binding motif strongly resembling the consensus sequence of a nuclear export signal. PDZ interactions with several peptide and protein motifs (including the nuclear export signal sequence from Dishevelled-2 protein) were investigated in detail using fluorescence spectroscopy, mutational analysis and immunoenzymatic assays. The experiments showed that the PDZ domain can bind the nuclear export signal sequence of the Dishevelled-2 protein. Since the intracellular localization of Dishevelled is governed by nuclear localization and nuclear export signal sequences, it is possible that the intramolecular interaction between PDZ domain and the export signal could modulate the balance between nuclear and cytoplasmic pool of the Dishevelled protein. Such a regulatory mechanism would be of utmost importance for the differential activation of Wnt signaling cascades, leading to selective promotion of the nucleus-dependent Wnt ß-catenin pathway at the expense of non-canonical Wnt signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Dominios PDZ , Fosfoproteínas/química , Secuencia de Aminoácidos , Proteínas Dishevelled , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Datos de Secuencia Molecular , Oligopéptidos/química , Biblioteca de Péptidos , Unión Proteica , Transducción de Señal
11.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 12): 1983-91, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12454455

RESUMEN

It is hypothesized that surface residues with high conformational entropy, specifically lysines and glutamates, impede protein crystallization. In a previous study using a model system of Rho-specific guanine nucleotide dissociation inhibitor (RhoGDI), it was shown that mutating Lys residues to Ala results in enhanced crystallizability, particularly when clusters of lysines are targeted. It was also shown that one of these mutants formed crystals that yielded diffraction to 2.0 A, a significant improvement on the wild-type protein crystals. In the current paper, an analysis of the impact of surface mutations replacing Glu residues with Ala or Asp on the stability and crystallization properties of RhoGDI is presented. The Glu-->Ala (Asp) mutants are generally more likely to produce crystals of the protein than the wild-type and in one case the resulting crystals yielded a diffraction pattern to 1.2 A resolution. This occurs in spite of the fact that mutating surface Glu residues almost invariably affects the protein's stability, as illustrated by the reduced deltaG between folded and unfolded forms measured by isothermal equilibrium denaturation. The present study strongly supports the notion that rational surface mutagenesis can be an effective tool in overcoming problems stemming from the protein's recalcitrance to crystallization and may also yield dramatic improvements in crystal quality.


Asunto(s)
Alanina/química , Ácido Aspártico/química , Ácido Glutámico/química , Inhibidores de Disociación de Guanina Nucleótido/química , Cristalización , Cristalografía por Rayos X , Inhibidores de Disociación de Guanina Nucleótido/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Inhibidores de la Disociación del Nucleótido Guanina rho-Específico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA