Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(30): e202305525, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37208297

RESUMEN

Metal-metal bonds have rarely been explored as active elements in supramolecular assemblies despite their unique potential to introduce responsive behavior. In this report, a dynamic molecular container composed of two cyclometalated Pt units is constructed using Pt-Pt bonds. This molecule-the flytrap-has a flexible jaw composed of two [18]crown-6 ethers that can adapt their shape to bind large inorganic cations with sub-micromolar affinity. Along with the spectroscopic and crystallographic characterization of the flytrap, we report its photochemical assembly, which allows the capture of ions and their transport from solution to the solid state. In addition, we have been able to recycle the flytrap to regenerate its starting material due to the reversible nature of the Pt-Pt bond. We believe that other molecular containers and materials for harvesting valuable substrates from solution could be assembled using the advances presented here.

2.
Biopolymers ; 112(1): e23393, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32896905

RESUMEN

T4 DNA ligase is a widely used ligase in many applications; yet in single nucleotide polymorphism analysis, it has been found generally lacking owing to its tendency to ligate mismatches quite efficiently. To address this lack of selectivity, we explored the effect of temperature on the selectivity of the ligase in discriminating single base pair mismatches at the 3'-terminus of the ligating strand using short ligation probes (9-mers). Remarkably, we observe outstanding selectivities when the assay temperature is increased to 7 °C to 13 °C above the dissociation temperature of the matched probe:target duplexes using commercially available enzyme at low concentration. Higher enzyme concentration shifts the temperature range to 13 °C to 19 °C above the probe:target dissociation temperatures. Finally, substituting the 5'-phosphate terminus with an abasic nucleotide decreases the optimal temperature range to 7 °C to 10 °C above the matched probe:target duplex. We compare the temperature dependence of the T4 DNA ligase catalyzed ligation and a nonenzymatic ligation system to contrast the origin of their modes of selectivity. For the latter, temperatures above the probe:target duplex dissociation lead to lower ligation conversions even for the perfect matched system. This difference between the two ligation systems reveals the uniqueness of the T4 DNA ligase's ability to maintain excellent ligation yields for the matched system at elevated temperatures. Although our observations are consistent with previous mechanistic work on T4 DNA ligase, by mapping out the temperature dependence for different ligase concentrations and probe modifications, we identify simple strategies for introducing greater selectivity into SNP discrimination based on ligation yields.


Asunto(s)
ADN Ligasas/metabolismo , Oligodesoxirribonucleótidos/metabolismo , Disparidad de Par Base , Reacción de Cicloadición , Fluoresceína/química , Oligodesoxirribonucleótidos/química , Temperatura de Transición
3.
Angew Chem Int Ed Engl ; 57(45): 14841-14846, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30239084

RESUMEN

The synthesis of the first bismuth-containing macromolecules that exhibit phosphorescence in the solid state and in the presence of oxygen is reported. These red emissive high molecular weight polymers (>300 kDa) feature benzobismoles appended to a hydrocarbon scaffold, and were built via an efficient ring-opening metathesis (ROMP) protocol. Moreover, our general procedure readily allows for the formation of cross-linked networks and block copolymers. Attaining stable red phosphorescence with non-toxic elements remains a challenge and, thus, our new class of soluble (processable) polymeric phosphor is of great interest. Furthermore, the formation of bismuth-rich cores within organic-inorganic block copolymer spherical micelles is possible, leading to patterned arrays of bismuth in the film state.

4.
Nanoscale ; 15(30): 12492-12505, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37449921

RESUMEN

Silicon nanocrystals (SiNCs) are a promising material for applications in bioanalysis and imaging. Compared to other types of semiconductor nanocrystals, the development and characterization of energy transfer (ET) configurations with SiNCs has been far more limited, resulting in an equally limited understanding of this process and its SiNC-specific nuances. Here, we present a systematic and detailed study of ET between SiNCs and dyes. A combination of spectroelectrophoresis and time-gated and time-resolved photoluminescence measurements were used to characterize the photophysical properties of ensembles of SiNCs and gain insight into how these properties varied as a function of nanocrystal size. ET between SiNC donors and a series of non-fluorescent Black Hole Quencher (BHQ) dyes and fluorescent sulfo-Cyanine 5.5 dye acceptors was evaluated in terms of spectral properties, wavelength-resolved efficiencies, trends with spectral overlap integral, and differences between two methods of BHQ association with the SiNCs. The overall results were consistent with a Förster resonance energy transfer (FRET) mechanism where the polydispersity of the SiNCs had a significant impact on the observed ET: the choice of wavelength and timing parameters were important, and ensemble measurements represented an average of heterogeneous ET behaviors. Prospective advantages and disadvantages of SiNCs as ET donors are discussed. This study serves as a foundation for the continued and optimized development of ET configurations with SiNCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA