RESUMEN
Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80%-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally related proteins. Finally, BioPlex, in combination with other approaches, can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial amyotrophic lateral sclerosis perturb a defined community of interactors.
Asunto(s)
Mapas de Interacción de Proteínas , Proteómica/métodos , Esclerosis Amiotrófica Lateral/genética , Humanos , Espectrometría de Masas , Mapeo de Interacción de Proteínas , Proteínas/química , Proteínas/aislamiento & purificación , Proteínas/metabolismoRESUMEN
The warnings of potential climate migration first appeared in the scientific literature in the late 1970s when increased recognition that disintegrating ice sheets could drive people to migrate from coastal cities. Since that time, scientists have modeled potential climate migration without integrating other population processes, potentially obscuring the demographic amplification of this migration. Climate migration could amplify demographic change-enhancing migration to destinations and suppressing migration to origins. Additionally, older populations are the least likely to migrate, and climate migration could accelerate population aging in origin areas. Here, we investigate climate migration under sea-level rise (SLR), a single climatic hazard, and examine both the potential demographic amplification effect and population aging by combining matrix population models, flood hazard models, and a migration model built on 40 y of environmental migration in the United States to project the US population distribution of US counties. We find that the demographic amplification of SLR for all feasible Representative Concentration Pathway-Shared Socioeconomic Pathway (RCP-SSP) scenarios in 2100 ranges between 8.6-28 M [5.7-53 M]-5.3 and 18 times the number of migrants (0.4-10 M). We also project significant aging of coastal areas as youthful populations migrate but older populations remain, accelerating population aging in origin areas. As the percentage of the population lost due to climate migration increases, the median age also increases-up to 10+ y older in some highly impacted coastal counties. Additionally, our population projection approach can be easily adapted to investigate additional or multiple climate hazards.
Asunto(s)
Envejecimiento , Inundaciones , Humanos , Ciudades , Cubierta de Hielo , DemografíaRESUMEN
OBJECTIVE: This study was undertaken to examine averted stroke in optimized stroke systems. METHODS: This secondary analysis of a multicenter trial from 2014 to 2020 compared patients treated by mobile stroke unit (MSU) versus standard management. The analytical cohort consisted of participants with suspected stroke treated with intravenous thrombolysis. The main outcome was a tissue-defined averted stroke, defined as a final diagnosis of stroke with resolution of presenting symptoms/signs by 24 hours attributed to thrombolysis and no acute infarction/hemorrhage on imaging. An additional outcome was stroke with early symptom resolution, defined as a final diagnosis of stroke with resolution of presenting symptoms/signs by 24 hours attributed to thrombolysis. RESULTS: Among 1,009 patients with a median last known well to thrombolysis time of 87 minutes, 159 (16%) had tissue-defined averted stroke and 276 (27%) had stroke with early symptom resolution. Compared with standard management, MSU care was associated with more tissue-defined averted stroke (18% vs 11%, adjusted odds ratio [aOR] = 1.82, 95% confidence interval [CI] = 1.13-2.98) and stroke with early symptom resolution (31% vs 21%, aOR = 1.74, 95% CI = 1.12-2.61). The relationships between thrombolysis treatment time and averted/early recovered stroke appeared nonlinear. Most models indicated increased odds for stroke with early symptom resolution but not tissue-defined averted stroke with earlier treatment. Additionally, younger age, female gender, hyperlipidemia, lower National Institutes of Health Stroke Scale, lower blood pressure, and no large vessel occlusion were associated with both tissue-defined averted stroke and stroke with early symptom resolution. INTERPRETATION: In optimized stroke systems, 1 in 4 patients treated with thrombolysis recovered within 24 hours and 1 in 6 had no demonstrable brain injury on imaging. ANN NEUROL 2024;95:347-361.
Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Humanos , Femenino , Activador de Tejido Plasminógeno/uso terapéutico , Fibrinolíticos/uso terapéutico , Estudios Prospectivos , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/complicaciones , Hemorragia/complicaciones , Terapia Trombolítica/métodos , Resultado del Tratamiento , Isquemia Encefálica/tratamiento farmacológicoRESUMEN
Although most tissues in an organism are genetically identical, the biochemistry of each is optimized to fulfill its unique physiological roles, with important consequences for human health and disease. Each tissue's unique physiology requires tightly regulated gene and protein expression coordinated by specialized, phosphorylation-dependent intracellular signaling. To better understand the role of phosphorylation in maintenance of physiological differences among tissues, we performed proteomic and phosphoproteomic characterizations of nine mouse tissues. We identified 12,039 proteins, including 6296 phosphoproteins harboring nearly 36,000 phosphorylation sites. Comparing protein abundances and phosphorylation levels revealed specialized, interconnected phosphorylation networks within each tissue while suggesting that many proteins are regulated by phosphorylation independently of their expression. Our data suggest that the "typical" phosphoprotein is widely expressed yet displays variable, often tissue-specific phosphorylation that tunes protein activity to the specific needs of each tissue. We offer this dataset as an online resource for the biological research community.
Asunto(s)
Perfilación de la Expresión Génica , Ratones/genética , Especificidad de Órganos , Fosforilación , Proteínas/metabolismo , Animales , Ratones/metabolismo , Proteínas Quinasas/genética , ProteómicaRESUMEN
Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.
Asunto(s)
Endopeptidasas/genética , Endopeptidasas/metabolismo , Proteómica , Programas Informáticos , Bases de Datos de Proteínas , Endopeptidasas/química , Retículo Endoplásmico/metabolismo , Expresión Génica , Humanos , Espectrometría de Masas en Tándem , Ubiquitina/metabolismoRESUMEN
Structure-specific endonucleases mediate cleavage of DNA structures formed during repair of collapsed replication forks and double-strand breaks (DSBs). Here, we identify BTBD12 as the human ortholog of the budding yeast DNA repair factor Slx4p and D. melanogaster MUS312. Human SLX4 forms a multiprotein complex with the ERCC4(XPF)-ERCC1, MUS81-EME1, and SLX1 endonucleases and also associates with MSH2/MSH3 mismatch repair complex, telomere binding complex TERF2(TRF2)-TERF2IP(RAP1), the protein kinase PLK1 and the uncharacterized protein C20orf94. Depletion of SLX4 causes sensitivity to mitomycin C and camptothecin and reduces the efficiency of DSB repair in vivo. SLX4 complexes cleave 3' flap, 5' flap, and replication fork structures; yet unlike other endonucleases associated with SLX4, the SLX1-SLX4 module promotes symmetrical cleavage of static and migrating Holliday junctions (HJs), identifying SLX1-SLX4 as a HJ resolvase. Thus, SLX4 assembles a modular toolkit for repair of specific types of DNA lesions and is critical for cellular responses to replication fork failure.
Asunto(s)
Reparación del ADN , Recombinasas/metabolismo , Animales , Línea Celular , Roturas del ADN de Doble Cadena , Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Humanos , Complejos Multiproteicos/metabolismo , Recombinasas/química , Recombinasas/genéticaRESUMEN
Many models of cognition and of neural computations posit the use and estimation of prior stimulus statistics: it has long been known that working memory and perception are strongly impacted by previous sensory experience, even when that sensory history is not relevant to the current task at hand. Nevertheless, the neural mechanisms and regions of the brain that are necessary for computing and using such prior experience are unknown. Here we report that the posterior parietal cortex (PPC) is a critical locus for the representation and use of prior stimulus information. We trained rats in an auditory parametric working memory task, and found that they displayed substantial and readily quantifiable behavioural effects of sensory-stimulus history, similar to those observed in humans and monkeys. Earlier proposals that the PPC supports working memory predict that optogenetic silencing of this region would impair behaviour in our working memory task. Contrary to this prediction, we found that silencing the PPC significantly improved performance. Quantitative analyses of behaviour revealed that this improvement was due to the selective reduction of the effects of prior sensory stimuli. Electrophysiological recordings showed that PPC neurons carried far more information about the sensory stimuli of previous trials than about the stimuli of the current trial. Furthermore, for a given rat, the more information about previous trial sensory history in the neural firing rates of the PPC, the greater the behavioural effect of sensory history, suggesting a tight link between behaviour and PPC representations of stimulus history. Our results indicate that the PPC is a central component in the processing of sensory-stimulus history, and could enable further neurobiological investigation of long-standing questions regarding how perception and working memory are affected by prior sensory information.
Asunto(s)
Percepción Auditiva/fisiología , Conducta/fisiología , Memoria a Corto Plazo/fisiología , Lóbulo Parietal/fisiología , Percepción del Tacto/fisiología , Estimulación Acústica , Adulto , Animales , Conducta Animal/fisiología , Femenino , Humanos , Masculino , Neuronas/fisiología , Optogenética , Lóbulo Parietal/citología , Psicometría , Ratas , Ratas Long-Evans , Adulto JovenRESUMEN
The vast majority of intracellular protein targets are refractory toward small-molecule therapeutic engagement, and additional therapeutic modalities are needed to overcome this deficiency. Here, the identification and characterization of a natural product, WDB002, reveals a therapeutic modality that dramatically expands the currently accepted limits of druggability. WDB002, in complex with the FK506-binding protein (FKBP12), potently and selectively binds the human centrosomal protein 250 (CEP250), resulting in disruption of CEP250 function in cells. The recognition mode is unprecedented in that the targeted domain of CEP250 is a coiled coil and is topologically featureless, embodying both a structural motif and surface topology previously considered on the extreme limits of "undruggability" for an intracellular target. Structural studies reveal extensive protein-WDB002 and protein-protein contacts, with the latter being distinct from those seen in FKBP12 ternary complexes formed by FK506 and rapamycin. Outward-facing structural changes in a bound small molecule can thus reprogram FKBP12 to engage diverse, otherwise "undruggable" targets. The flat-targeting modality demonstrated here has the potential to expand the druggable target range of small-molecule therapeutics. As CEP250 was recently found to be an interaction partner with the Nsp13 protein of the SARS-CoV-2 virus that causes COVID-19 disease, it is possible that WDB002 or an analog may exert useful antiviral activity through its ability to form high-affinity ternary complexes containing CEP250 and FKBP12.
Asunto(s)
Actinobacteria/genética , Antivirales/farmacología , Genoma Bacteriano , Macrólidos/farmacología , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína 1A de Unión a Tacrolimus/química , Proteína 1A de Unión a Tacrolimus/metabolismo , Actinobacteria/metabolismo , Secuencia de Aminoácidos , Antivirales/química , Antivirales/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Evolución Molecular , Células HEK293 , Humanos , Macrólidos/química , Macrólidos/metabolismo , Modelos Moleculares , Conformación Proteica , Homología de Secuencia , Sirolimus/química , Sirolimus/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
The number of the distinct tactile percepts exceeds the number of receptor types in the skin, signifying that perception cannot be explained by a one-to-one mapping from a single receptor channel to a corresponding percept. The abundance of touch experiences results from multiplexing (the coexistence of multiple codes within a single channel, increasing the available information content of that channel) and from the mixture of receptor channels by divergence and convergence. When a neuronal representation emerges through the combination of receptor channels, perceptual uncertainty can occur-a perceptual judgment is affected by a stimulus feature that would be, ideally, excluded from the task. Though uncertainty seems at first glance to reflect nonoptimality in sensory processing, it is actually a consequence of efficient coding mechanisms that exploit prior knowledge about objects that are touched. Studies that analyze how perceptual judgments are "fooled" by variations in sensory input can reveal the neuronal mechanisms underlying the tactile experience.
Asunto(s)
Percepción del Tacto , Tacto , Juicio , Neuronas , IncertidumbreRESUMEN
The connection between stimulus perception and time perception remains unknown. The present study combines human and rat psychophysics with sensory cortical neuronal firing to construct a computational model for the percept of elapsed time embedded within sense of touch. When subjects judged the duration of a vibration applied to the fingertip (human) or whiskers (rat), increasing stimulus intensity led to increasing perceived duration. Symmetrically, increasing vibration duration led to increasing perceived intensity. We modeled real spike trains recorded from vibrissal somatosensory cortex as input to dual leaky integrators-an intensity integrator with short time constant and a duration integrator with long time constant-generating neurometric functions that replicated the actual psychophysical functions of rats. Returning to human psychophysics, we then confirmed specific predictions of the dual leaky integrator model. This study offers a framework, based on sensory coding and subsequent accumulation of sensory drive, to account for how a feeling of the passage of time accompanies the tactile sensory experience.
Asunto(s)
Modelos Neurológicos , Psicofísica/métodos , Corteza Somatosensorial/fisiología , Percepción del Tiempo/fisiología , Potenciales de Acción/fisiología , Adulto , Animales , Biología Computacional , Humanos , Masculino , Ratas , Ratas Wistar , Análisis y Desempeño de Tareas , Vibración , Vibrisas/fisiología , Adulto JovenRESUMEN
BACKGROUND: Body surface area (BSA)-based dosing of irinotecan (IR) does not account for its pharmacokinetic (PK) and pharmacodynamic (PD) variabilities. Functional hepatic nuclear imaging (HNI) and excretory/metabolic/PD pharmacogenomics have shown correlations with IR disposition and toxicity/efficacy. This study reports the development of a nonlinear mixed-effect population model to identify pharmacogenomic and HNI-related covariates that impact on IR disposition to support dosage optimization. METHODS: Patients had advanced colorectal cancer treated with IR combination therapy. Baseline blood was analysed by Affymetrix DMET™ Plus Array and, for PD, single nucleotide polymorphisms (SNPs) by Sanger sequencing. For HNI, patients underwent 99mTc-IDA hepatic imaging, and data was analysed for hepatic extraction/excretion parameters. Blood was taken for IR and metabolite (SN38, SN38G) analysis on day 1 cycle 1. Population modelling utilised NONMEM version 7.2.0, with structural PK models developed for each moiety. Covariates include patient demographics, HNI parameters and pharmacogenomic variants. RESULTS: Analysis included (i) PK data: 32 patients; (ii) pharmacogenomic data: 31 patients: 750 DMET and 22 PD variants; and (iii) HNI data: 32 patients. On initial analysis, overall five SNPs were identified as significant covariates for CLSN38. Only UGT1A3_c.31 T > C and ABCB1_c.3435C > T were included in the final model, whereby CLSN38 reduced from 76.8 to 55.1%. CONCLUSION: The identified UGT1A3_c.31 T > C and ABCB1_c.3435C > T variants, from wild type to homozygous, were included in the final model for SN38 clearance.
Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Glucuronosiltransferasa/genética , Irinotecán/farmacocinética , Hígado/metabolismo , Inhibidores de Topoisomerasa I/farmacocinética , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Australia , Neoplasias Colorrectales/patología , Genotipo , Humanos , Irinotecán/uso terapéutico , Hígado/diagnóstico por imagen , Modelos Biológicos , Metástasis de la Neoplasia , Farmacogenética , Variantes Farmacogenómicas , Polimorfismo de Nucleótido Simple , Estudios Prospectivos , Inhibidores de Topoisomerasa I/uso terapéuticoRESUMEN
Prospective demographic information of the United States is limited to national-level analyses and subnational analyses of the total population. With nearly 40% of the U.S. population being residents of coastal areas, understanding the anticipated demographic changes in coastal counties is important for long-range planning purposes. In this research note, we use long-range, county-level population projections based on a simplified cohort-component method to discuss demographic changes by age, sex, and race and ethnicity for coastal counties between 2020 and the end of the century, and we compare these changes to inland counties. Presently, coastal counties are statistically significantly different from inland counties by race and ethnicity (more diverse) and sex (more women) but not by age, yet by 2025, we expect coastal counties to become significantly older than inland counties. We note several important trajectories of predicted demographic outcomes in coastal counties across the remainder of the century: (1) the non-Hispanic White population is expected to decrease, both numerically and as a percentage of the population; (2) the population older than 65 is projected to increase, both numerically and as a percentage of the population; and (3) the ratio of women to men remains constant over the century at 1.03. These trends combine to suggest that the future U.S. coastline will likely be both increasingly diverse racially and ethnically and significantly older than it is today.
Asunto(s)
Etnicidad , Femenino , Humanos , Masculino , Estudios Prospectivos , Estados UnidosRESUMEN
The primary fertility index for a population, the total fertility rate (TFR), cannot be calculated for many areas and periods because it requires disaggregation of births by mother's age. Here we discuss a flexible framework for estimating TFR using inputs as minimal as a population pyramid. We develop five variants, each with increasing complexity and data requirements. We test accuracy across a diverse set of data sources that comprise more than 2,400 fertility schedules with known TFR values, including the Human Fertility Database, Demographic and Health Surveys, U.S. counties, and nonhuman species. We show that even the simplest and least accurate variant has a median error of only 0.09 births per woman over 2,400 fertility schedules, suggesting accurate TFR estimation over a wide range of demographic conditions. We anticipate that this framework will extend fertility analysis to new subpopulations, periods, geographies, and even species. To demonstrate the framework's utility in new applications, we produce subnational estimates of African fertility levels, reconstruct historical European TFRs for periods up to 150 years before the collection of detailed birth records, and estimate TFR for the United States conditional on race and household income.
Asunto(s)
Tasa de Natalidad/tendencias , Demografía/estadística & datos numéricos , Renta/estadística & datos numéricos , Grupos Raciales/estadística & datos numéricos , África/epidemiología , Europa (Continente)/epidemiología , Humanos , Edad Materna , Modelos Teóricos , Dinámica Poblacional , Estados Unidos/epidemiologíaRESUMEN
Research on the destinations of environmentally induced migrants has found simultaneous migration to both nearby and long-distance destinations, most likely caused by the comingling of evacuee and permanent migrant data. Using a unique data set of separate evacuee and migration destinations, we compare and contrast the pre-, peri-, and post-disaster migration systems of permanent migrants and temporary evacuees of the Great East Japan Earthquake and Tsunami. We construct and compare prefecture-to-prefecture migration matrices for Japanese prefectures to investigate the similarity of migration systems. We find evidence supporting the presence of two separate migration systems-one for evacuees, who seem to emphasize short distance migration, and one for more permanent migrants, who emphasize migration to destinations with preexisting ties. Additionally, our results show that permanent migration in the peri- and post-periods is largely identical to the preexisting migration system. Our results demonstrate stability in migration systems concerning migration after a major environmental event.
Asunto(s)
Refugiados/estadística & datos numéricos , Migrantes/estadística & datos numéricos , Tsunamis/estadística & datos numéricos , Ambiente , Femenino , Humanos , Japón , MasculinoRESUMEN
Intellectual disability (ID) is a common condition with considerable genetic heterogeneity. Next-generation sequencing of large cohorts has identified an increasing number of genes implicated in ID, but their roles in neurodevelopment remain largely unexplored. Here we report an ID syndrome caused by de novo heterozygous missense, nonsense, and frameshift mutations in BCL11A, encoding a transcription factor that is a putative member of the BAF swi/snf chromatin-remodeling complex. Using a comprehensive integrated approach to ID disease modeling, involving human cellular analyses coupled to mouse behavioral, neuroanatomical, and molecular phenotyping, we provide multiple lines of functional evidence for phenotypic effects. The etiological missense variants cluster in the amino-terminal region of human BCL11A, and we demonstrate that they all disrupt its localization, dimerization, and transcriptional regulatory activity, consistent with a loss of function. We show that Bcl11a haploinsufficiency in mice causes impaired cognition, abnormal social behavior, and microcephaly in accordance with the human phenotype. Furthermore, we identify shared aberrant transcriptional profiles in the cortex and hippocampus of these mouse models. Thus, our work implicates BCL11A haploinsufficiency in neurodevelopmental disorders and defines additional targets regulated by this gene, with broad relevance for our understanding of ID and related syndromes.
Asunto(s)
Proteínas Portadoras/genética , Haploinsuficiencia/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Transcripción Genética , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Corteza Cerebral/metabolismo , Ensamble y Desensamble de Cromatina/genética , Codón sin Sentido/genética , Trastornos del Conocimiento/genética , Mutación del Sistema de Lectura/genética , Hipocampo/metabolismo , Humanos , Discapacidad Intelectual/patología , Discapacidad Intelectual/psicología , Masculino , Ratones , Microcefalia/genética , Mutación Missense/genética , Trastornos del Neurodesarrollo/patología , Trastornos del Neurodesarrollo/fisiopatología , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fenotipo , Proteínas Represoras , Conducta Social , Síndrome , Factores de Transcripción/química , Factores de Transcripción/metabolismo , TranscriptomaRESUMEN
Rhythms with time scales of multiple cycles per second permeate the mammalian brain, yet neuroscientists are not certain of their functional roles. One leading idea is that coherent oscillation between two brain regions facilitates the exchange of information between them. In rats, the hippocampus and the vibrissal sensorimotor system both are characterized by rhythmic oscillation in the theta range, 5-12 Hz. Previous work has been divided as to whether the two rhythms are independent or coherent. To resolve this question, we acquired three measures from rats--whisker motion, hippocampal local field potential (LFP), and barrel cortex unit firing--during a whisker-mediated texture discrimination task and during control conditions (not engaged in a whisker-mediated memory task). Compared to control conditions, the theta band of hippocampal LFP showed a marked increase in power as the rats approached and then palpated the texture. Phase synchronization between whisking and hippocampal LFP increased by almost 50% during approach and texture palpation. In addition, a greater proportion of barrel cortex neurons showed firing that was phase-locked to hippocampal theta while rats were engaged in the discrimination task. Consistent with a behavioral consequence of phase synchronization, the rats identified the texture more rapidly and with lower error likelihood on trials in which there was an increase in theta-whisking coherence at the moment of texture palpation. These results suggest that coherence between the whisking rhythm, barrel cortex firing, and hippocampal LFP is augmented selectively during epochs in which the rat collects sensory information and that such coherence enhances the efficiency of integration of stimulus information into memory and decision-making centers.
Asunto(s)
Región CA1 Hipocampal/fisiología , Corteza Somatosensorial/fisiología , Ritmo Teta , Percepción del Tacto/fisiología , Vibrisas/fisiología , Animales , Masculino , Ratas WistarRESUMEN
The PARKIN ubiquitin ligase (also known as PARK2) and its regulatory kinase PINK1 (also known as PARK6), often mutated in familial early-onset Parkinson's disease, have central roles in mitochondrial homeostasis and mitophagy. Whereas PARKIN is recruited to the mitochondrial outer membrane (MOM) upon depolarization via PINK1 action and can ubiquitylate porin, mitofusin and Miro proteins on the MOM, the full repertoire of PARKIN substrates--the PARKIN-dependent ubiquitylome--remains poorly defined. Here we use quantitative diGly capture proteomics (diGly) to elucidate the ubiquitylation site specificity and topology of PARKIN-dependent target modification in response to mitochondrial depolarization. Hundreds of dynamically regulated ubiquitylation sites in dozens of proteins were identified, with strong enrichment for MOM proteins, indicating that PARKIN dramatically alters the ubiquitylation status of the mitochondrial proteome. Using complementary interaction proteomics, we found depolarization-dependent PARKIN association with numerous MOM targets, autophagy receptors, and the proteasome. Mutation of the PARKIN active site residue C431, which has been found mutated in Parkinson's disease patients, largely disrupts these associations. Structural and topological analysis revealed extensive conservation of PARKIN-dependent ubiquitylation sites on cytoplasmic domains in vertebrate and Drosophila melanogaster MOM proteins. These studies provide a resource for understanding how the PINK1-PARKIN pathway re-sculpts the proteome to support mitochondrial homeostasis.
Asunto(s)
Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteoma/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Animales , Línea Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Humanos , Ratones , Mitocondrias/química , Proteínas Quinasas/metabolismo , ProteómicaRESUMEN
Vertebrates express two enzymes for activation of ubiquitin-UBA1, which is responsible for activation of the vast majority of E2 conjugating enzymes, and UBA6, which uses the dedicated E2, USE1. However, targets and E3s for UBA6-USE1 are unknown. Here, we demonstrate that UBA6-USE1 functions with the UBR1-3 subfamily of N-recognin E3s to degrade the N-end rule substrates RGS4, RGS5, and Arg (R)-GFP. This pathway functions in the cytoplasm in parallel with the UBA1-UBE2A/B-UBR2 cascade, which promotes turnover of nuclear RGS4/5 proteins and an apparently phenotypically distinct pool of cytoplasmic RGS4/5. UBR2 promotes Lys48 (K48)-specific ubiquitin discharge from, and RGS4 ubiquitylation by, both USE1 and UBE2A in vitro. This work provides insight into the machinery employed by the UBA6-USE1 cascade to promote protein turnover and suggests that the UBA6 and UBA1 pathways can function in parallel with the same E3 to degrade the same targets in a spatially distinct manner.
Asunto(s)
Proteínas RGS/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Consenso , Células HEK293 , Humanos , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Estructura Terciaria de Proteína , Proteínas SNARE , Alineación de Secuencia , Enzimas Activadoras de Ubiquitina/fisiología , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Ubiquitinas/fisiología , Proteínas de Transporte VesicularRESUMEN
Despite the diverse biological pathways known to be regulated by ubiquitylation, global identification of substrates that are targeted for ubiquitylation has remained a challenge. To globally characterize the human ubiquitin-modified proteome (ubiquitinome), we utilized a monoclonal antibody that recognizes diglycine (diGly)-containing isopeptides following trypsin digestion. We identify ~19,000 diGly-modified lysine residues within ~5000 proteins. Using quantitative proteomics we monitored temporal changes in diGly site abundance in response to both proteasomal and translational inhibition, indicating both a dependence on ongoing translation to observe alterations in site abundance and distinct dynamics of individual modified lysines in response to proteasome inhibition. Further, we demonstrate that quantitative diGly proteomics can be utilized to identify substrates for cullin-RING ubiquitin ligases. Interrogation of the ubiquitinome allows for not only a quantitative assessment of alterations in protein homeostasis fidelity, but also identification of substrates for individual ubiquitin pathway enzymes.
Asunto(s)
Proteoma/metabolismo , Ubiquitina/metabolismo , Células Cultivadas , Proteínas Cullin/metabolismo , Glicilglicina/genética , Células HCT116 , Humanos , Lisina/genética , Proteómica , UbiquitinaciónRESUMEN
Demethylation by the AlkB dioxygenases represents an important mechanism for repair of N-alkylated nucleotides. However, little is known about their functions in mammalian cells. We report the purification of the ALKBH3 complex and demonstrate its association with the activating signal cointegrator complex (ASCC). ALKBH3 is overexpressed in various cancers, and both ALKBH3 and ASCC are important for alkylation damage resistance in these tumor cell lines. ASCC3, the largest subunit of ASCC, encodes a 3'-5' DNA helicase, whose activity is crucial for the generation of single-stranded DNA upon which ALKBH3 preferentially functions for dealkylation. In cell lines that are dependent on ALKBH3 and ASCC3 for alkylation damage resistance, loss of ALKBH3 or ASCC3 leads to increased 3-methylcytosine and reduced cell proliferation, which correlates with pH2A.X and 53BP1 foci formation. Our data provide a molecular mechanism by which ALKBH3 collaborates with ASCC to maintain genomic integrity in a cell-type specific manner.