Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
ACR Open Rheumatol ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39364807

RESUMEN

OBJECTIVE: Janus kinase family members are essential for signaling by multiple cytokines, including many implicated in systemic lupus erythematosus (SLE) pathogenesis. To test whether inhibition of JAK1 signaling can be efficacious in SLE, we used a JAK1-selective inhibitor (ABT-317) and evaluated its ability to ameliorate disease in murine SLE. METHODS: Efficacy of ABT-317 was evaluated using NZB/W-F1 mice treated prophylactically and therapeutically. Primary endpoints were proteinuria, survival, and saliva production. Other endpoints included histological analysis of kidneys and salivary glands, flow cytometric analysis of splenic cell populations, and gene expression analysis by RNA sequencing in the kidneys, salivary glands, and blood. Publicly available human kidney gene transcription data were used to assess the translatability of the mouse findings. RESULTS: ABT-317 was efficacious when dosed prophylactically and prevented disease for up to two months after treatment cessation. When dosed therapeutically, ABT-317 quickly reversed severe proteinuria and restored saliva production, as well as diminished kidney and salivary gland inflammation. ABT-317-induced changes in glomerular morphology coincided with normalization of a human nephrotic gene signature, suggesting translatability to human lupus nephritis (LN). CONCLUSION: JAK1 inhibition prevented and reversed kidney and salivary gland manifestations of murine lupus with long-lasting effects after treatment cessation. These data, along with the presence of JAK1 and nephrotic gene signatures in human LN glomeruli, suggest that a JAK1-selective inhibitor may be an effective therapeutic in the treatment of human SLE and LN.

2.
J Med Chem ; 67(11): 9495-9515, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38780432

RESUMEN

We describe the discovery of a thioester-containing glucocorticoid receptor modulator (GRM) payload and the corresponding antibody-drug conjugate (ADC). Payload 6 was designed for rapid hepatic inactivation to minimize systemic exposure of nonconjugated GRM. Mouse PK indicated that 6 is cleared 10-fold more rapidly than a first-generation GRM payload, resulting in 10-fold lower exposure and 3-fold decrease in Cmax. The anti-mTNF conjugate ADC5 fully inhibited inflammation in mouse contact hypersensitivity with minimal effects on corticosterone, a biomarker for systemic GRM effects, at doses up to and including 100 mg/kg. Concomitant inhibition of P1NP suggests potential delivery to cells involved in the remodeling of bone, which may be a consequence of TNF-targeting or bystander payload effects. Furthermore, ADC5 fully suppressed inflammation in collagen-induced arthritis mouse model after one 10 mg/kg dose for 21 days. The properties of the anti-hTNF conjugate were suitable for liquid formulation and may enable subcutaneous dosing.


Asunto(s)
Artritis Experimental , Corticosterona , Inmunoconjugados , Factor de Necrosis Tumoral alfa , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Ratones , Inmunoconjugados/farmacología , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Inmunoconjugados/uso terapéutico , Corticosterona/sangre , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Glucocorticoides/farmacología , Humanos , Masculino , Modelos Animales de Enfermedad
3.
J Med Chem ; 66(13): 9161-9173, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37379257

RESUMEN

To facilitate subcutaneous dosing, biotherapeutics need to exhibit properties that enable high-concentration formulation and long-term stability in the formulation buffer. For antibody-drug conjugates (ADCs), the introduction of drug-linkers can lead to increased hydrophobicity and higher levels of aggregation, which are both detrimental to the properties required for subcutaneous dosing. Herein we show how the physicochemical properties of ADCs could be controlled through the drug-linker chemistry in combination with prodrug chemistry of the payload, and how optimization of these combinations could afford ADCs with significantly improved solution stability. Key to achieving this optimization is the use of an accelerated stress test performed in a minimal formulation buffer.


Asunto(s)
Inmunoconjugados , Inmunoconjugados/química , Interacciones Hidrofóbicas e Hidrofílicas
4.
J Med Chem ; 66(17): 12544-12558, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37656698

RESUMEN

Stable attachment of drug-linkers to the antibody is a critical requirement, and for maleimide conjugation to cysteine, it is achieved by ring hydrolysis of the succinimide ring. During ADC profiling in our in-house property screening funnel, we discovered that the succinimide ring open form is in equilibrium with the ring closed succinimide. Bromoacetamide (BrAc) was identified as the optimal replacement, as it affords stable attachment of the drug-linker to the antibody while completely removing the undesired ring open-closed equilibrium. Additionally, BrAc also offers multiple benefits over maleimide, especially with respect to homogeneity of the ADC structure. In combination with a short, hydrophilic linker and phosphate prodrug on the payload, this afforded a stable ADC (ABBV-154) with the desired properties to enable long-term stability to facilitate subcutaneous self-administration.


Asunto(s)
Inmunoconjugados , Profármacos , Receptores de Glucocorticoides , Inhibidores del Factor de Necrosis Tumoral , Anticuerpos , Profármacos/farmacología , Glucocorticoides , Maleimidas , Inmunoconjugados/farmacología
5.
J Med Chem ; 65(6): 4500-4533, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35133822

RESUMEN

Glucocorticoid receptor modulators (GRM) are the first-line treatment for many immune diseases, but unwanted side effects restrict chronic dosing. However, targeted delivery of a GRM payload via an immunology antibody-drug conjugate (iADC) may deliver significant efficacy at doses that do not lead to unwanted side effects. We initiated our α-TNF-GRM ADC project focusing on identifying the optimal payload and a linker that afforded stable attachment to both the payload and antibody, resulting in the identification of the synthetically accessible maleimide-Gly-Ala-Ala linker. DAR 4 purified ADCs were shown to be more efficacious in a mouse contact hypersensitivity model than the parent α-TNF antibody. Analysis of P1NP and corticosterone biomarkers showed there was a sufficient therapeutic window between efficacy and unwanted effects. In a chronic mouse arthritis model, α-TNF-GRM ADCs were more efficacious than both the parent α-TNF mAb and an isotype control bearing the same GRM payload.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Animales , Anticuerpos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Ratones , Receptores de Glucocorticoides
6.
J Med Chem ; 65(23): 15893-15934, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36394224

RESUMEN

Using a convergent synthetic route to enable multiple points of diversity, a series of glucocorticoid receptor modulators (GRM) were profiled for potency, selectivity, and drug-like properties in vitro. Despite covering a large range of diversity, profiling the nonconjugated small molecule was suboptimal and they were conjugated to a mouse antitumor necrosis factor (TNF) antibody using the MP-Ala-Ala linker. Screening of the resulting antibody drug conjugates (ADCs) provided a better assessment of efficacy and physical properties, reinforcing the need to conduct structure-activity relationship studies on the complete ADC. DAR4 ADCs were screened in an acute mouse contact hypersensitivity model measuring biomarkers to ensure a sufficient therapeutic window. In a chronic mouse arthritis model, mouse anti-TNF GRM ADCs were efficacious after a single dose of 10 mg/kg i.p. for over 30 days. Data on the unconjugated payloads and mouse surrogate anti-TNF ADCs identified payload 17 which was conjugated to a human anti-TNF antibody and advanced to the clinic as ABBV-3373.


Asunto(s)
Glucocorticoides , Inmunoconjugados , Animales , Humanos , Ratones , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Receptores de Glucocorticoides , Inhibidores del Factor de Necrosis Tumoral
9.
J Neuroimmunol ; 239(1-2): 37-43, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21911260

RESUMEN

Immunological responses to protect against excessive inflammation can be regulated by the central nervous system through the cholinergic anti-inflammatory pathway wherein acetylcholine released from vagus nerves can inhibit inflammatory cytokines. Although a role for the α7 nicotinic acetylcholine receptor (α7 nAChR) in mediating this pathway has been suggested, pharmacological modulation of the pathway by selective agonists remains to be further elucidated. In this study, the role of α7 nAChRs in the regulation of TNF-α release was investigated using high affinity and selective α7 nAChR agonists in mouse peritoneal macrophage and human whole blood in vitro, and in mouse serum in vivo. In mouse peritoneal macrophages, LPS-induced TNF-α release in vitro was inhibited by a selective α7 nAChR agonist, A-833834 (5-[6-(5-Methyl-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl)-pyridazin-3-yl]-1H-indole), and that effect was attenuated by α7 nAChR antagonist methyllycaconitine. The inhibitory effect of A-833834 on LPS-induced TNF-α release was also observed in human whole blood in vitro. I.v. LPS-induced TNF-α release in mouse serum was attenuated following i.p. administration of A-833834. Similarly, i.v. LPS-induced TNF-α release in mouse serum was also attenuated following i.p. administration of A-585539, another α7 nAChR agonist with limited brain penetration, suggesting that these effects are mediated by peripheral α7 nAChRs. A-833834 was also efficacious in suppressing TNF-α release in mouse serum following oral administration in zymosan-induced peritonitis. These studies collectively demonstrate that selectively targeting α7 nAChRs could offer a novel therapeutic modality to treat acute and chronic inflammatory disease states.


Asunto(s)
Agonistas Nicotínicos/sangre , Agonistas Nicotínicos/farmacología , Receptores Nicotínicos/fisiología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Citocinas/antagonistas & inhibidores , Citocinas/sangre , Citocinas/metabolismo , Femenino , Humanos , Mediadores de Inflamación/agonistas , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/sangre , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Oocitos , Peritonitis/tratamiento farmacológico , Peritonitis/inmunología , Peritonitis/patología , Unión Proteica/efectos de los fármacos , Unión Proteica/inmunología , Receptores Nicotínicos/sangre , Receptores Nicotínicos/metabolismo , Factor de Necrosis Tumoral alfa/sangre , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa 7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA