Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 161(6): 1334-44, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26046438

RESUMEN

Females may display dramatically different behavior depending on their state of ovulation. This is thought to occur through sex-specific hormones acting on behavioral centers in the brain. Whether incoming sensory activity also differs across the ovulation cycle to alter behavior has not been investigated. Here, we show that female mouse vomeronasal sensory neurons (VSNs) are temporarily and specifically rendered "blind" to a subset of male-emitted pheromone ligands during diestrus yet fully detect and respond to the same ligands during estrus. VSN silencing occurs through the action of the female sex-steroid progesterone. Not all VSNs are targeted for silencing; those detecting cat ligands remain continuously active irrespective of the estrous state. We identify the signaling components that account for the capacity of progesterone to target specific subsets of male-pheromone responsive neurons for inactivation. These findings indicate that internal physiology can selectively and directly modulate sensory input to produce state-specific behavior. PAPERCLIP.


Asunto(s)
Ciclo Estral , Ratones/fisiología , Conducta Sexual Animal , Olfato , Órgano Vomeronasal/fisiología , Animales , Femenino , Masculino , Ratones Endogámicos C57BL , Neuronas/fisiología , Feromonas/metabolismo , Progesterona/metabolismo , Proteínas/química , Caracteres Sexuales , Órgano Vomeronasal/citología
2.
Nature ; 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39478229

RESUMEN

How the olfactory system detects and distinguishes odorants with diverse physicochemical properties and molecular configurations remains poorly understood. Vertebrate animals perceive odours through G protein-coupled odorant receptors (ORs)1. In humans, around 400 ORs enable the sense of smell. The OR family comprises two main classes: class I ORs are tuned to carboxylic acids whereas class II ORs, which represent most of the human repertoire, respond to a wide variety of odorants2. A fundamental challenge in understanding olfaction is the inability to visualize odorant binding to ORs. Here we uncover molecular properties of odorant-OR interactions by using engineered ORs crafted using a consensus protein design strategy3. Because such consensus ORs (consORs) are derived from the 17 major subfamilies of human ORs, they provide a template for modelling individual native ORs with high sequence and structural homology. The biochemical tractability of consORs enabled the determination of four cryogenic electron microscopy structures of distinct consORs with specific ligand recognition properties. The structure of a class I consOR, consOR51, showed high structural similarity to the native human receptor OR51E2 and generated a homology model of a related member of the human OR51 family with high predictive power. Structures of three class II consORs revealed distinct modes of odorant-binding and activation mechanisms between class I and class II ORs. Thus, the structures of consORs lay the groundwork for understanding molecular recognition of odorants by the OR superfamily.

3.
Nature ; 615(7953): 742-749, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922591

RESUMEN

Our sense of smell enables us to navigate a vast space of chemically diverse odour molecules. This task is accomplished by the combinatorial activation of approximately 400 odorant G protein-coupled receptors encoded in the human genome1-3. How odorants are recognized by odorant receptors remains unclear. Here we provide mechanistic insight into how an odorant binds to a human odorant receptor. Using cryo-electron microscopy, we determined the structure of the active human odorant receptor OR51E2 bound to the fatty acid propionate. Propionate is bound within an occluded pocket in OR51E2 and makes specific contacts critical to receptor activation. Mutation of the odorant-binding pocket in OR51E2 alters the recognition spectrum for fatty acids of varying chain length, suggesting that odorant selectivity is controlled by tight packing interactions between an odorant and an odorant receptor. Molecular dynamics simulations demonstrate that propionate-induced conformational changes in extracellular loop 3 activate OR51E2. Together, our studies provide a high-resolution view of chemical recognition of an odorant by a vertebrate odorant receptor, providing insight into how this large family of G protein-coupled receptors enables our olfactory sense.


Asunto(s)
Microscopía por Crioelectrón , Odorantes , Propionatos , Receptores Odorantes , Humanos , Odorantes/análisis , Propionatos/química , Propionatos/metabolismo , Receptores Odorantes/química , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/ultraestructura , Olfato/fisiología , Simulación de Dinámica Molecular , Mutación , Sitios de Unión/genética , Especificidad por Sustrato/genética
4.
PLoS Biol ; 21(12): e3002442, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38127837

RESUMEN

Rodent tears contain social chemosignals with diverse effects, including blocking male aggression. Human tears also contain a chemosignal that lowers male testosterone, but its behavioral significance was unclear. Because reduced testosterone is associated with reduced aggression, we tested the hypothesis that human tears act like rodent tears to block male aggression. Using a standard behavioral paradigm, we found that sniffing emotional tears with no odor percept reduced human male aggression by 43.7%. To probe the peripheral brain substrates of this effect, we applied tears to 62 human olfactory receptors in vitro. We identified 4 receptors that responded in a dose-dependent manner to this stimulus. Finally, to probe the central brain substrates of this effect, we repeated the experiment concurrent with functional brain imaging. We found that sniffing tears increased functional connectivity between the neural substrates of olfaction and aggression, reducing overall levels of neural activity in the latter. Taken together, our results imply that like in rodents, a human tear-bound chemosignal lowers male aggression, a mechanism that likely relies on the structural and functional overlap in the brain substrates of olfaction and aggression. We suggest that tears are a mammalian-wide mechanism that provides a chemical blanket protecting against aggression.


Asunto(s)
Agresión , Olfato , Lágrimas , Femenino , Humanos , Masculino , Agresión/fisiología , Encéfalo/fisiología , Odorantes , Olfato/fisiología , Testosterona/farmacología , Lágrimas/química
5.
Int J Mol Sci ; 25(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38892263

RESUMEN

The cell surface metalloprotease ADAM17 (a disintegrin and metalloprotease 17) and its binding partners iRhom2 and iRhom1 (inactive Rhomboid-like proteins 1 and 2) modulate cell-cell interactions by mediating the release of membrane proteins such as TNFα (Tumor necrosis factor α) and EGFR (Epidermal growth factor receptor) ligands from the cell surface. Most cell types express both iRhoms, though myeloid cells exclusively express iRhom2, and iRhom1 is the main iRhom in the mouse brain. Here, we report that iRhom2 is uniquely expressed in olfactory sensory neurons (OSNs), highly specialized cells expressing one olfactory receptor (OR) from a repertoire of more than a thousand OR genes in mice. iRhom2-/- mice had no evident morphological defects in the olfactory epithelium (OE), yet RNAseq analysis revealed differential expression of a small subset of ORs. Notably, while the majority of ORs remain unaffected in iRhom2-/- OE, OSNs expressing ORs that are enriched in iRhom2-/- OE showed fewer gene expression changes upon odor environmental changes than the majority of OSNs. Moreover, we discovered an inverse correlation between the expression of iRhom2 compared to OSN activity genes and that odor exposure negatively regulates iRhom2 expression. Given that ORs are specialized G-protein coupled receptors (GPCRs) and many GPCRs activate iRhom2/ADAM17, we investigated if ORs could activate iRhom2/ADAM17. Activation of an olfactory receptor that is ectopically expressed in keratinocytes (OR2AT4) by its agonist Sandalore leads to ERK1/2 phosphorylation, likely via an iRhom2/ADAM17-dependent pathway. Taken together, these findings point to a mechanism by which odor stimulation of OSNs activates iRhom2/ADAM17 catalytic activity, resulting in downstream transcriptional changes to the OR repertoire and activity genes, and driving a negative feedback loop to downregulate iRhom2 expression.


Asunto(s)
Neuronas Receptoras Olfatorias , Receptores Odorantes , Animales , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Ratones , Neuronas Receptoras Olfatorias/metabolismo , Olfato/fisiología , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Ratones Noqueados , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Mucosa Olfatoria/metabolismo , Regulación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Humanos
6.
Cell Tissue Res ; 391(1): 19-42, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36401093

RESUMEN

Sex steroid hormones influence olfactory-mediated social behaviors, and it is generally hypothesized that these effects result from circulating hormones and/or neurosteroids synthesized in the brain. However, it is unclear whether sex steroid hormones are synthesized in the olfactory epithelium or the olfactory bulb, and if they can modulate the activity of the olfactory sensory neurons. Here, we review important discoveries related to the metabolism of sex steroids in the mouse olfactory epithelium and olfactory bulb, along with potential areas of future research. We summarize current knowledge regarding the expression, neuroanatomical distribution, and biological activity of the steroidogenic enzymes, sex steroid receptors, and proteins that are important to the metabolism of these hormones and reflect on their potential to influence early olfactory processing. We also review evidence related to the effects of sex steroid hormones on the development and activity of olfactory sensory neurons. By better understanding how these hormones are metabolized and how they act both at the periphery and olfactory bulb level, we can better appreciate the complexity of the olfactory system and discover potential similarities and differences in early olfactory processing between sexes.


Asunto(s)
Hormonas Esteroides Gonadales , Neuronas Receptoras Olfatorias , Ratones , Animales , Hormonas Esteroides Gonadales/metabolismo , Hormonas/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Mucosa Olfatoria/metabolismo , Bulbo Olfatorio/metabolismo , Proteínas/metabolismo , Mamíferos/metabolismo
7.
FASEB J ; 36(7): e22384, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35639289

RESUMEN

Odorant receptors (ORs) expressed in mammalian olfactory sensory neurons are essential for the sense of smell. However, structure-function studies of many ORs are hampered by unsuccessful heterologous expression. To understand and eventually overcome this bottleneck, we performed heterologous expression and functional assays of over 80 OR variants and chimeras. Combined with literature data and machine learning, we found that the transmembrane domain 4 (TM4) and its interactions with neighbor residues are important for OR functional expression. The data highlight critical roles of T4.62 therein. ORs that fail to reach the cell membrane can be rescued by modifications in TM4. Consequently, such modifications in MOR256-3 (Olfr124) also alter OR responses to odorants. T1614.62 P causes the retention of MOR256-3 in the endoplasmic reticulum (ER), while T1614.62 P/T1484.49 A reverses the retention and makes receptor trafficking to cell membrane. This study offers new clues toward wide-range functional studies of mammalian ORs.


Asunto(s)
Receptores Odorantes , Animales , Membrana Celular/metabolismo , Mamíferos/metabolismo , Odorantes , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato
8.
Proc Natl Acad Sci U S A ; 117(48): 30738-30743, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199615

RESUMEN

Most mammals rely on chemosensory cues for individual recognition, which is essential to many aspects of social behavior, such as maternal bonding, mate recognition, and inbreeding avoidance. Both volatile molecules and nonvolatile peptides secreted by individual conspecifics are detected by olfactory sensory neurons in the olfactory epithelium and the vomeronasal organ. The pertinent cues used for individual recognition remain largely unidentified. Here we show that nonformylated, but not N-formylated, mitochondrially encoded peptides-that is, the nine N-terminal amino acids of NADH dehydrogenases 1 and 2-can be used to convey strain-specific information among individual mice. We demonstrate that these nonformylated peptides are sufficient to induce a strain-selective pregnancy block. We also observed that the pregnancy block by an unfamiliar peptide derived from a male of a different strain was prevented by a memory formed at the time of mating with that male. Our findings also demonstrate that pregnancy-blocking chemosignals in the urine are maternally inherited, as evidenced by the production of reciprocal sons from two inbred strains and our test of their urine's ability to block pregnancy. We propose that this link between polymorphic mitochondrial peptides and individual recognition provides the molecular means to communicate an individual's maternal lineage and strain.


Asunto(s)
Herencia Materna , Péptidos/genética , Péptidos/metabolismo , Feromonas , Animales , Femenino , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Mitocondrias/genética , Mitocondrias/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Bulbo Olfatorio , Embarazo , Conducta Sexual Animal , Especificidad de la Especie
9.
Proc Natl Acad Sci U S A ; 117(6): 2957-2967, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31974307

RESUMEN

Mammalian odorant receptors are a diverse and rapidly evolving set of G protein-coupled receptors expressed in olfactory cilia membranes. Most odorant receptors show little to no cell surface expression in nonolfactory cells due to endoplasmic reticulum retention, which has slowed down biochemical studies. Here we provide evidence that structural instability and divergence from conserved residues of individual odorant receptors underlie intracellular retention using a combination of large-scale screening of odorant receptors cell surface expression in heterologous cells, point mutations, structural modeling, and machine learning techniques. We demonstrate the importance of conserved residues by synthesizing consensus odorant receptors that show high levels of cell surface expression similar to conventional G protein-coupled receptors. Furthermore, we associate in silico structural instability with poor cell surface expression using molecular dynamics simulations. We propose an enhanced evolutionary capacitance of olfactory sensory neurons that enable the functional expression of odorant receptors with cryptic mutations.


Asunto(s)
Receptores Odorantes/química , Animales , Línea Celular , Humanos , Ratones , Simulación de Dinámica Molecular , Neuronas Receptoras Olfatorias/química , Neuronas Receptoras Olfatorias/metabolismo , Estabilidad Proteica , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
10.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175532

RESUMEN

Olfaction is mediated via olfactory receptors (ORs) that are expressed on the cilia membrane of olfactory sensory neurons in the olfactory epithelium. The functional expression of most ORs requires the assistance of receptor-transporting proteins (RTPs). We examined the interactome of RTP1S and OR via proximity biotinylation. Deubiquitinating protein VCIP135, the F-actin-capping protein sub-unit alpha-2, and insulin-like growth factor 2 mRNA-binding protein 2 were biotinylated via AirID fused with OR, RTP1S-AirID biotinylated heat shock protein A6 (HSPA6), and double-stranded RNA-binding protein Staufen homolog 2 (STAU2). Co-expression of HSPA6 partially enhanced the surface expression of Olfr544. The surface expression of Olfr544 increased by 50-80%. This effect was also observed when RTP1S was co-expressed. Almost identical results were obtained from the co-expression of STAU2. The interactions of HSPA6 and STAU2 with RTP1S were examined using a NanoBit assay. The results show that the RTP1S N-terminus interacted with the C-terminal domain of HSP6A and the N-terminal domain of STAU2. In contrast, OR did not significantly interact with STAU2 and HSPA6. Thus, HSP6A and STAU2 appear to be involved in the process of OR traffic through interaction with RTP1S.


Asunto(s)
Receptores Odorantes , Receptores Odorantes/metabolismo , Proteínas Portadoras/genética
11.
Biophys J ; 121(5): 830-840, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35065915

RESUMEN

Olfactory receptors (ORs) belong to class A G-protein coupled receptors (GPCRs) and are activated by a variety of odorants. To date, there is no three-dimensional structure of an OR available. One of the major bottlenecks in obtaining purified protein for structural studies of ORs is their poor expression in heterologous cells. To design mutants that enhance expression and thereby enable protein purification, we first identified computable physical properties that recapitulate OR and class A GPCR expression and further conducted an iterative computational prediction-experimental test cycle and generated human OR mutants that express as high as biogenic amine receptors for which structures have been solved. In the process of developing the computational method to recapitulate the expression of ORs in membranes, we identified properties, such as amino acid sequence coevolution, and the strength of the interactions between intracellular loop 1 (ICL1) and the helix 8 region of ORs, to enhance their heterologous expression. We identified mutations that are directly located in these regions as well as other mutations not located in these regions but allosterically strengthen the ICL1-helix 8 enhance expression. These mutants also showed functional responses to known odorants. This method to enhance heterologous expression of mammalian ORs will facilitate high-throughput "deorphanization" of ORs, and enable OR purification for biochemical and structural studies to understand odorant-OR interactions.


Asunto(s)
Receptores Odorantes , Secuencia de Aminoácidos , Animales , Humanos , Mamíferos/metabolismo , Odorantes , Receptores Acoplados a Proteínas G , Receptores Odorantes/química , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
12.
J Neurosci ; 41(30): 6449-6467, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34099512

RESUMEN

In sensory systems of the brain, mechanisms exist to extract distinct features from stimuli to generate a variety of behavioral repertoires. These often correspond to different cell types at various stages in sensory processing. In the mammalian olfactory system, complex information processing starts in the olfactory bulb, whose output is conveyed by mitral cells (MCs) and tufted cells (TCs). Despite many differences between them, and despite the crucial position they occupy in the information hierarchy, Cre-driver lines that distinguish them do not yet exist. Here, we sought to identify genes that are differentially expressed between MCs and TCs of the mouse, with an ultimate goal to generate a cell type-specific Cre-driver line, starting from a transcriptome analysis using a large and publicly available single-cell RNA-seq dataset (Zeisel et al., 2018). Many genes were differentially expressed, but only a few showed consistent expressions in MCs and at the specificity required. After further validating these putative markers using ISH, two genes (i.e., Pkib and Lbdh2) remained as promising candidates. Using CRISPR/Cas9-mediated gene editing, we generated Cre-driver lines and analyzed the resulting recombination patterns. This indicated that our new inducible Cre-driver line, Lbhd2-CreERT2, can be used to genetically label MCs in a tamoxifen dose-dependent manner, both in male and female mice, as assessed by soma locations, projection patterns, and sensory-evoked responses in vivo Hence, this is a promising tool for investigating cell type-specific contributions to olfactory processing and demonstrates the power of publicly accessible data in accelerating science.SIGNIFICANCE STATEMENT In the brain, distinct cell types play unique roles. It is therefore important to have tools for studying unique cell types specifically. For the sense of smell in mammals, information is processed first by circuits of the olfactory bulb, where two types of cells, mitral cells and tufted cells, output different information. We generated a transgenic mouse line that enables mitral cells to be specifically labeled or manipulated. This was achieved by looking for genes that are specific to mitral cells using a large and public gene expression dataset, and creating a transgenic mouse using the gene editing technique, CRISPR/Cas9. This will allow scientists to better investigate parallel information processing underlying the sense of smell.


Asunto(s)
Línea Celular , Neuronas/citología , Bulbo Olfatorio/citología , Percepción Olfatoria/fisiología , Animales , Femenino , Integrasas , Masculino , Ratones , Ratones Transgénicos , Vías Olfatorias/citología
13.
Horm Behav ; 129: 104911, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33422557

RESUMEN

Sex hormones alter the organization of the brain during early development and coordinate various behaviors throughout life. In zebra finches, song learning is limited to males, with the associated song learning brain pathways only maturing in males and atrophying in females. While this atrophy can be prevented by treating females with exogenous estrogen during early post-hatch development, the requirement of estrogen during normal male song system development is uncertain. For the first time in songbirds, we administered exemestane, a potent third generation estrogen synthesis inhibitor, from the day of hatching until adulthood in order to reassess the role of estrogen in song circuit development. We examined the behavior, brain anatomy, and transcriptomes of individual song nuclei in these pharmacologically manipulated animals. We found that males with long-term exemestane treatment had diminished male-specific plumage and impaired song learning, but minimal effect on song nuclei sizes and their specialized transcriptome. Consistent with prior findings, females with long-term estrogen treatment retained a functional song system with song nuclei that had specialized gene expression similar, but not identical to males. We also observed that different song nuclei responded to estrogen manipulation differently, with Area X in the striatum being the most altered by estrogen modulation. These findings support the hypothesis that song learning is an ancestral trait in both sexes that was subsequently suppressed in females of some species and that estrogen has come to play a critical role in modulating this suppression as well as refinement of song learning.


Asunto(s)
Pinzones , Animales , Encéfalo , Estrógenos/farmacología , Femenino , Aprendizaje , Masculino , Vocalización Animal
14.
Mol Cell Neurosci ; 104: 103469, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32061665

RESUMEN

The perception of odors relies on combinatorial codes consisting of odorant receptor (OR) response patterns to encode odor identity. Modulation of these patterns by odorant interactions at ORs potentially explains several olfactory phenomena: mixture suppression, unpredictable sensory outcomes, and the perception of odorant mixtures as unique objects. We determined OR response patterns to 4 odorants and 3 binary mixtures in vivo in mice, identifying 30 responsive ORs. These patterns typically had a few strongly responsive ORs and a greater number of weakly responsive ORs. ORs responsive to an odorant were often unrelated sequences distributed across several OR subfamilies. Mixture responses predicted pharmacological interactions between odorants, which were tested in vitro by heterologous expression of ORs in cultured cells, providing independent evidence confirming odorant agonists for 13 ORs and identifying both suppressive and additive effects. This included 11 instances of antagonism of ORs by an odorant, 1 instance of additive responses to a binary mixture, 1 instance of suppression of a strong agonist by a weak agonist, and the discovery of an inverse agonist for an OR. Interactions between odorants at ORs are common even when the odorants are not known to interact perceptually in humans, and in some cases interactions at mouse ORs correlate with the ability of humans to perceive an odorant in a mixture.


Asunto(s)
Odorantes , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/metabolismo , Olfato , Aldehídos/farmacología , Animales , Células Cultivadas , Femenino , Lactonas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas Receptoras Olfatorias/efectos de los fármacos , Pentanoles/farmacología , Receptores Odorantes/agonistas , Receptores Odorantes/antagonistas & inhibidores
15.
Proc Natl Acad Sci U S A ; 115(17): E3950-E3958, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29632183

RESUMEN

Understanding olfaction at the molecular level is challenging due to the lack of crystallographic models of odorant receptors (ORs). To better understand the molecular mechanism of OR activation, we focused on chiral (R)-muscone and other musk-smelling odorants due to their great importance and widespread use in perfumery and traditional medicine, as well as environmental concerns associated with bioaccumulation of musks with estrogenic/antiestrogenic properties. We experimentally and computationally examined the activation of human receptors OR5AN1 and OR1A1, recently identified as specifically responding to musk compounds. OR5AN1 responds at nanomolar concentrations to musk ketone and robustly to macrocyclic sulfoxides and fluorine-substituted macrocyclic ketones; OR1A1 responds only to nitromusks. Structural models of OR5AN1 and OR1A1 based on quantum mechanics/molecular mechanics (QM/MM) hybrid methods were validated through direct comparisons with activation profiles from site-directed mutagenesis experiments and analysis of binding energies for 35 musk-related odorants. The experimentally found chiral selectivity of OR5AN1 to (R)- over (S)-muscone was also computationally confirmed for muscone and fluorinated (R)-muscone analogs. Structural models show that OR5AN1, highly responsive to nitromusks over macrocyclic musks, stabilizes odorants by hydrogen bonding to Tyr260 of transmembrane α-helix 6 and hydrophobic interactions with surrounding aromatic residues Phe105, Phe194, and Phe207. The binding of OR1A1 to nitromusks is stabilized by hydrogen bonding to Tyr258 along with hydrophobic interactions with surrounding aromatic residues Tyr251 and Phe206. Hydrophobic/nonpolar and hydrogen bonding interactions contribute, respectively, 77% and 13% to the odorant binding affinities, as shown by an atom-based quantitative structure-activity relationship model.


Asunto(s)
Cicloparafinas/química , Modelos Moleculares , Receptores Odorantes/química , Células HEK293 , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Mutagénesis Sitio-Dirigida , Estabilidad Proteica , Estructura Secundaria de Proteína , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
16.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768977

RESUMEN

Olfactory receptors (ORs) constitute the largest superfamily of G protein-coupled receptors (GPCRs). ORs are involved in sensing odorants as well as in other ectopic roles in non-nasal tissues. Matching of an enormous number of the olfactory stimulation repertoire to its counterpart OR through machine learning (ML) will enable understanding of olfactory system, receptor characterization, and exploitation of their therapeutic potential. In the current study, we have selected two broadly tuned ectopic human OR proteins, OR1A1 and OR2W1, for expanding their known chemical space by using molecular descriptors. We present a scheme for selecting the optimal features required to train an ML-based model, based on which we selected the random forest (RF) as the best performer. High activity agonist prediction involved screening five databases comprising ~23 M compounds, using the trained RF classifier. To evaluate the effectiveness of the machine learning based virtual screening and check receptor binding site compatibility, we used docking of the top target ligands to carefully develop receptor model structures. Finally, experimental validation of selected compounds with significant docking scores through in vitro assays revealed two high activity novel agonists for OR1A1 and one for OR2W1.


Asunto(s)
Aprendizaje Automático , Receptores Odorantes/agonistas , Teorema de Bayes , Diseño de Fármacos , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Femenino , Células HEK293 , Humanos , Técnicas In Vitro , Ligandos , Masculino , Simulación del Acoplamiento Molecular , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Máquina de Vectores de Soporte , Interfaz Usuario-Computador
17.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35008703

RESUMEN

Vertebrate animals detect odors through olfactory receptors (ORs), members of the G protein-coupled receptor (GPCR) family. Due to the difficulty in the heterologous expression of ORs, studies of their odor molecule recognition mechanisms have progressed poorly. Functional expression of most ORs in heterologous cells requires the co-expression of their chaperone proteins, receptor transporting proteins (RTPs). Yet, some ORs were found to be functionally expressed without the support of RTP (RTP-independent ORs). In this study, we investigated whether amino acid residues highly conserved among RTP-independent ORs improve the functional expression of ORs in heterologous cells. We found that a single amino acid substitution at one of two sites (NBW3.39 and 3.43) in their conserved residues (E and L, respectively) significantly improved the functional expression of ORs in heterologous cells. E3.39 and L3.43 also enhanced the membrane expression of RTP-dependent ORs in the absence of RTP. These changes did not alter the odorant responsiveness of the tested ORs. Our results showed that specific sites within transmembrane domains regulate the membrane expression of some ORs.


Asunto(s)
Regulación de la Expresión Génica , Mamíferos/genética , Mutagénesis/genética , Receptores Odorantes/genética , Aminoácidos/genética , Animales , Células HEK293 , Humanos , Ligandos , Mutación con Pérdida de Función/genética , Ratones , Proteínas Mutantes/metabolismo , Mutación/genética , Receptores Odorantes/agonistas , Receptores Odorantes/química
18.
J Biol Chem ; 294(40): 14661-14673, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31395660

RESUMEN

Receptor-transporting protein 1S (RTP1S) is an accessory protein that mediates the transport of mammalian odorant receptors (ORs) into the plasma membrane. Although most ORs fail to localize to the cell surface when expressed alone in nonolfactory cells, functional expression of ORs is achieved with the coexpression of RTP1S. However, the mechanism for RTP1S-mediated OR trafficking remains unclear. In this study, we attempted to reveal the mode of action and critical residues of RTP1S in OR trafficking. Experiments using N-terminal truncation and Ala substitution mutants of RTP1S demonstrated that four N-terminal amino acids have essential roles in OR trafficking. Additionally, using recombinant proteins and split luciferase assays in mammalian cells, we provided evidence for the dimer formation of RTP1S. Furthermore, we determined that the 2nd Cys residue is required for the efficient dimerization of RTP1S. Altogether, these findings provide insights into the mechanism for plasma membrane transport of ORs by RTP1S.


Asunto(s)
Proteínas de Transporte de Membrana/química , Receptores Acoplados a Proteínas G/química , Receptores Odorantes/química , Animales , Movimiento Celular/genética , Dimerización , Citometría de Flujo , Células HEK293 , Humanos , Proteínas de Transporte de Membrana/genética , Ratones , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Odorantes/análisis , Transporte de Proteínas/genética , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/genética
19.
Cell Mol Life Sci ; 76(5): 995-1004, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30599066

RESUMEN

Odorant receptors represent the largest family of mammalian G protein-coupled receptors. Phylogenetically, they are split into two classes (I and II). By analyzing the entire subclass I odorant receptors sequences, we identified two class I-specific and highly conserved motifs. These are predicted to face each other at the extra-cellular portion of the transmembrane domain, forming a vestibular site at the entrance to the orthosteric-binding cavity. Molecular dynamics simulation combined with site-directed mutagenesis and in vitro functional assays confirm the functional role of this vestibular site in ligand-driven activation. Mutations at this part of the receptor differentially affect the receptor response to four agonists. Since this vestibular site is involved in ligand recognition, it could serve ligand design that targets specifically this sub-genome of mammalian odorant receptors.


Asunto(s)
Receptores Odorantes/química , Secuencias de Aminoácidos , Sitios de Unión , Secuencia Conservada , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Receptores Odorantes/agonistas , Receptores Odorantes/clasificación , Receptores Odorantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA