Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 146(15)2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31371378

RESUMEN

The spatiotemporal identity of neural progenitors and the regional control of neurogenesis are essential for the development of cerebral cortical architecture. Here, we report that mammalian DM domain factors (Dmrt) determine the identity of cerebral cortical progenitors. Among the Dmrt family genes expressed in the developing dorsal telencephalon, Dmrt3 and Dmrta2 show a medialhigh/laterallow expression gradient. Their simultaneous loss confers a ventral identity to dorsal progenitors, resulting in the ectopic expression of Gsx2 and massive production of GABAergic olfactory bulb interneurons in the dorsal telencephalon. Furthermore, double-mutant progenitors in the medial region exhibit upregulated Pax6 and more lateral characteristics. These ventral and lateral shifts in progenitor identity depend on Dmrt gene dosage. We also found that Dmrt factors bind to Gsx2 and Pax6 enhancers to suppress their expression. Our findings thus reveal that the graded expression of Dmrt factors provide positional information for progenitors by differentially repressing downstream genes in the developing cerebral cortex.


Asunto(s)
Corteza Cerebral/embriología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/citología , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción PAX6/biosíntesis , Factor de Transcripción PAX6/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética
2.
Nature ; 540(7631): 144-149, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27851729

RESUMEN

Targeted genome editing via engineered nucleases is an exciting area of biomedical research and holds potential for clinical applications. Despite rapid advances in the field, in vivo targeted transgene integration is still infeasible because current tools are inefficient, especially for non-dividing cells, which compose most adult tissues. This poses a barrier for uncovering fundamental biological principles and developing treatments for a broad range of genetic disorders. Based on clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) technology, here we devise a homology-independent targeted integration (HITI) strategy, which allows for robust DNA knock-in in both dividing and non-dividing cells in vitro and, more importantly, in vivo (for example, in neurons of postnatal mammals). As a proof of concept of its therapeutic potential, we demonstrate the efficacy of HITI in improving visual function using a rat model of the retinal degeneration condition retinitis pigmentosa. The HITI method presented here establishes new avenues for basic research and targeted gene therapies.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Marcación de Gen/métodos , Genoma/genética , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Animales , División Celular , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Terapia Genética/métodos , Neuronas/citología , Neuronas/metabolismo , Ratas , Homología de Secuencia
3.
J Biol Chem ; 295(28): 9650-9662, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32467230

RESUMEN

Alzheimer's disease (AD) is a very common neurodegenerative disorder, chiefly caused by increased production of neurotoxic ß-amyloid (Aß) peptide generated from proteolytic cleavage of ß-amyloid protein precursor (APP). Except for familial AD arising from mutations in the APP and presenilin (PSEN) genes, the molecular mechanisms regulating the amyloidogenic processing of APP are largely unclear. Alcadein α/calsyntenin1 (ALCα/CLSTN1) is a neuronal type I transmembrane protein that forms a complex with APP, mediated by the neuronal adaptor protein X11-like (X11L or MINT2). Formation of the ALCα-X11L-APP tripartite complex suppresses Aß generation in vitro, and X11L-deficient mice exhibit enhanced amyloidogenic processing of endogenous APP. However, the role of ALCα in APP metabolism in vivo remains unclear. Here, by generating ALCα-deficient mice and using immunohistochemistry, immunoblotting, and co-immunoprecipitation analyses, we verified the role of ALCα in the suppression of amyloidogenic processing of endogenous APP in vivo We observed that ALCα deficiency attenuates the association of X11L with APP, significantly enhances amyloidogenic ß-site cleavage of APP, especially in endosomes, and increases the generation of endogenous Aß in the brain. Furthermore, we noted amyloid plaque formation in the brains of human APP-transgenic mice in an ALCα-deficient background. These results unveil a potential role of ALCα in protecting cerebral neurons from Aß-dependent pathogenicity in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Proteínas de Unión al Calcio/deficiencia , Complejos Multiproteicos/metabolismo , Procesamiento Proteico-Postraduccional , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Encéfalo/patología , Proteínas de Unión al Calcio/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Ratones , Ratones Noqueados , Complejos Multiproteicos/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
4.
Nature ; 522(7554): 62-7, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25992544

RESUMEN

The lymphatic vasculature is a blind-ended network crucial for tissue-fluid homeostasis, immune surveillance and lipid absorption from the gut. Recent evidence has proposed an entirely venous-derived mammalian lymphatic system. By contrast, here we show that cardiac lymphatic vessels in mice have a heterogeneous cellular origin, whereby formation of at least part of the cardiac lymphatic network is independent of sprouting from veins. Multiple Cre­lox-based lineage tracing revealed a potential contribution from the putative haemogenic endothelium during development, and discrete lymphatic endothelial progenitor populations were confirmed by conditional knockout of Prox1 in Tie2+ and Vav1+ compartments. In the adult heart, myocardial infarction promoted a significant lymphangiogenic response, which was augmented by treatment with VEGF-C, resulting in improved cardiac function. These data prompt the re-evaluation of a century-long debate on the origin of lymphatic vessels and suggest that lymphangiogenesis may represent a therapeutic target to promote cardiac repair following injury.


Asunto(s)
Linfangiogénesis , Vasos Linfáticos/citología , Vasos Linfáticos/lesiones , Miocardio/citología , Animales , Linaje de la Célula , Células Endoteliales/citología , Células Endoteliales/metabolismo , Femenino , Corazón/fisiología , Corazón/fisiopatología , Proteínas de Homeodominio/metabolismo , Vasos Linfáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Proteínas Proto-Oncogénicas c-vav/metabolismo , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor TIE-2/metabolismo , Análisis Espacio-Temporal , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Venas/citología , Saco Vitelino/citología
5.
Dev Dyn ; 249(6): 698-710, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32012381

RESUMEN

BACKGROUND: During development, Cajal-Retzius (CR) cells are the first generated and essential pioneering neurons that control neuronal migration and arealization in the mammalian cortex. CR cells are derived from specific regions within the telencephalon, that is, the pallial septum in the rostromedial cortex, the pallial-subpallial boundary, and the cortical hem (CH) in the caudomedial cortex. However, the molecular mechanism underlying the generation of CR cell subtypes in distinct regions of origin is poorly understood. RESULTS: We found that double-sex and mab-3 related transcription factor (Dmrt) genes, that is, Dmrta1 and Dmrt3, were expressed in the progenitor domains that produce CR cells. The number of CH-derived CR cells was severely decreased in Dmrt3 mutants, especially in Dmrta1 and Dmrt3 double mutants. The reduced production of the CR cells was consistent with the developmental impairment of the CH structures in the medial telencephalon from which the CR cells are produced. CONCLUSION: Dmrta1 and Dmrt3 cooperatively regulate patterning of the CH structure and production of the CR cells from the CH during cortical development.


Asunto(s)
Neuronas/metabolismo , Telencéfalo/citología , Factores de Transcripción/metabolismo , Animales , Linaje de la Célula , Movimiento Celular/fisiología , Neurogénesis/fisiología , Factores de Transcripción/genética
6.
Dev Biol ; 452(2): 134-143, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31112709

RESUMEN

The origin of the mammalian lymphatic vasculature has been studied for more than a century; however, details regarding organ-specific lymphatic development remain unknown. A recent study reported that cardiac lymphatic endothelial cells (LECs) stem from venous and non-venous origins in mice. Here, we identified Isl1-expressing progenitors as a potential non-venous origin of cardiac LECs. Genetic lineage tracing with Isl1-Cre reporter mice suggested a possible contribution from the Isl1-expressing pharyngeal mesoderm constituting the second heart field to lymphatic vessels around the cardiac outflow tract as well as to those in the facial skin and the lymph sac. Isl1+ lineage-specific deletion of Prox1 resulted in disrupted LYVE1+ vessel structures, indicating a Prox1-dependent mechanism in this contribution. Tracing back to earlier embryonic stages revealed the presence of VEGFR3+ and/or Prox1+ cells that overlapped with the Isl1+ pharyngeal core mesoderm. These data may provide insights into the developmental basis of heart diseases involving lymphatic vasculature and improve our understanding of organ-based lymphangiogenesis.


Asunto(s)
Linaje de la Célula , Corazón/embriología , Proteínas con Homeodominio LIM/metabolismo , Linfangiogénesis , Vasos Linfáticos/citología , Vasos Linfáticos/embriología , Factores de Transcripción/metabolismo , Animales , Células Endoteliales/metabolismo , Proteínas de Homeodominio/metabolismo , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Faringe/citología , Células Madre/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
7.
Development ; 144(3): 385-399, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27993981

RESUMEN

The precise control of neuronal migration and morphological changes during differentiation is essential for neocortical development. We hypothesized that the transition of progenitors through progressive stages of differentiation involves dynamic changes in levels of mitochondrial reactive oxygen species (mtROS), depending on cell requirements. We found that progenitors had higher levels of mtROS, but that these levels were significantly decreased with differentiation. The Prdm16 gene was identified as a candidate modulator of mtROS using microarray analysis, and was specifically expressed by progenitors in the ventricular zone. However, Prdm16 expression declined during the transition into NeuroD1-positive multipolar cells. Subsequently, repression of Prdm16 expression by NeuroD1 on the periphery of ventricular zone was crucial for appropriate progression of the multipolar phase and was required for normal cellular development. Furthermore, time-lapse imaging experiments revealed abnormal migration and morphological changes in Prdm16-overexpressing and -knockdown cells. Reporter assays and mtROS determinations demonstrated that PGC1α is a major downstream effector of Prdm16 and NeuroD1, and is required for regulation of the multipolar phase and characteristic modes of migration. Taken together, these data suggest that Prdm16 plays an important role in dynamic cellular redox changes in developing neocortex during neural differentiation.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Neocórtex/embriología , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Factores de Transcripción/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Movimiento Celular/genética , Movimiento Celular/fisiología , Células Cultivadas , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Mitocondrias/metabolismo , Neocórtex/citología , Neocórtex/fisiología , Neurogénesis/genética , Neurogénesis/fisiología , Oxidación-Reducción , Embarazo , Especies Reactivas de Oxígeno/metabolismo , Imagen de Lapso de Tiempo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética
8.
Development ; 143(17): 3216-22, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27578183

RESUMEN

Genome-editing technology has revolutionized the field of biology. Here, we report a novel de novo gene-targeting method mediated by in utero electroporation into the developing mammalian brain. Electroporation of donor DNA with the CRISPR/Cas9 system vectors successfully leads to knock-in of the donor sequence, such as EGFP, to the target site via the homology-directed repair mechanism. We developed a targeting vector system optimized to prevent anomalous leaky expression of the donor gene from the plasmid, which otherwise often occurs depending on the donor sequence. The knock-in efficiency of the electroporated progenitors reached up to 40% in the early stage and 20% in the late stage of the developing mouse brain. Furthermore, we inserted different fluorescent markers into the target gene in each homologous chromosome, successfully distinguishing homozygous knock-in cells by color. We also applied this de novo gene targeting to the ferret model for the study of complex mammalian brains. Our results demonstrate that this technique is widely applicable for monitoring gene expression, visualizing protein localization, lineage analysis and gene knockout, all at the single-cell level, in developmental tissues.


Asunto(s)
Encéfalo/metabolismo , Electroporación/métodos , Animales , Sistemas CRISPR-Cas/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Ratones
9.
EMBO Rep ; 18(9): 1509-1520, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28684399

RESUMEN

In many cell types, mitotic spindle orientation relies on the canonical "LGN complex" composed of Pins/LGN, Mud/NuMA, and Gαi subunits. Membrane localization of this complex recruits motor force generators that pull on astral microtubules to orient the spindle. Drosophila Pins shares highly conserved functional domains with its two vertebrate homologs LGN and AGS3. Whereas the role of Pins and LGN in oriented divisions is extensively documented, involvement of AGS3 remains controversial. Here, we show that AGS3 is not required for planar divisions of neural progenitors in the mouse neocortex. AGS3 is not recruited to the cell cortex and does not rescue LGN loss of function. Despite conserved interactions with NuMA and Gαiin vitro, comparison of LGN and AGS3 functional domains in vivo reveals unexpected differences in the ability of these interactions to mediate spindle orientation functions. Finally, we find that Drosophila Pins is unable to substitute for LGN loss of function in vertebrates, highlighting that species-specific modulations of the interactions between components of the Pins/LGN complex are crucial in vivo for spindle orientation.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Huso Acromático/metabolismo , Animales , Proteínas Portadoras/química , Proteínas de Ciclo Celular , División Celular , Polaridad Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Inhibidores de Disociación de Guanina Nucleótido/química , Inhibidores de Disociación de Guanina Nucleótido/genética , Ratones , Microtúbulos/metabolismo , Neocórtex/fisiología , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios Proteicos , Huso Acromático/genética
10.
J Neurochem ; 146(5): 500-525, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29570795

RESUMEN

The cerebral cortex is a highly organized structure whose development depends on diverse progenitor cell types, namely apical radial glia, intermediate progenitors, and basal radial glia cells, which are responsible for the production of the correct neuronal output. In recent years, these progenitor cell types have been deeply studied, particularly basal radial glia and their role in cortical expansion and gyrification. We review here a broad series of factors that regulate progenitor behavior and daughter cell fate. We first describe the different neuronal progenitor types, emphasizing the differences between lissencephalic and gyrencephalic species. We then review key factors shown to influence progenitor proliferation versus differentiation, discussing their roles in progenitor dynamics, neuronal production, and potentially brain size and complexity. Although spindle orientation has been considered a critical factor for mode of division and daughter cell output, we discuss other features that are emerging as crucial for these processes such as organelle and cell cycle dynamics. Additionally, we highlight the importance of adhesion molecules and the polarity complex for correct cortical development. Finally, we briefly discuss studies assessing progenitor multipotency and its possible contribution to the production of specific neuronal populations. This review hence summarizes recent aspects of cortical progenitor cell biology, and pinpoints emerging features critical for their behavior.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Corteza Cerebral/citología , Células Madre/fisiología , Animales , Humanos
11.
Biochem Biophys Res Commun ; 483(1): 94-100, 2017 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-28063930

RESUMEN

Organoids mimicking the formation of the brain cortex have been demonstrated to be powerful tools for developmental studies as well as pathological investigations of brain malformations. Here, we report an integrated approach for the quantification of temporal neural production (neurogenic rate) in organoids derived from embryonic brains. Spherical tissue fragments with polarized cytoarchitectures were incubated in multiple cavities arranged in a polymethylmethacrylate chip. The time-dependent neurogenic rate in the organoids was monitored by the level of EGFP under the promoter of Tbr2, a transcription factor that is transiently expressed in neural fate-committed progenitors during corticogenesis. Importantly, our monitoring system exhibited a quick response to DAPT, a drug that promotes neural differentiation. Furthermore, we successfully quantified the temporal neurogenic rate in a large number of organoids by applying image processing that semi-automatically recognized the positions of organoids and measured their signal intensities from sequential images. Taken together, we provide a strategy to quantitate the neurogenic rate in brain organoids in a time-dependent manner, which will also be a potent method for monitoring organoid formation and drug activity in other tissue types.


Asunto(s)
Encéfalo/embriología , Neurogénesis/fisiología , Organoides/embriología , Animales , Encéfalo/citología , Encéfalo/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Transgénicos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Técnicas de Cultivo de Órganos/instrumentación , Técnicas de Cultivo de Órganos/métodos , Organoides/citología , Organoides/metabolismo , Imagen de Lapso de Tiempo
12.
J Neurosci ; 35(37): 12869-89, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26377473

RESUMEN

Neurogliaform (RELN+) and bipolar (VIP+) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been elucidated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP). Interestingly, Prox1 promotes the maturation of CGE-derived interneuron subtypes through intrinsic differentiation programs that operate in tandem with extrinsically driven neuronal activity-dependent pathways. Thus Prox1 represents the first identified transcription factor specifically required for the embryonic and postnatal acquisition of CGE-derived cortical interneuron properties. SIGNIFICANCE STATEMENT: Despite the recognition that 30% of GABAergic cortical interneurons originate from the caudal ganglionic eminence (CGE), to date, a specific transcriptional program that selectively regulates the development of these populations has not yet been identified. Moreover, while CGE-derived interneurons display unique patterns of tangential and radial migration and preferentially populate the superficial layers of the cortex, identification of a molecular program that controls these events is lacking.Here, we demonstrate that the homeodomain transcription factor Prox1 is expressed in postmitotic CGE-derived cortical interneuron precursors and is maintained into adulthood. We found that Prox1 function is differentially required during both embryonic and postnatal stages of development to direct the migration, differentiation, circuit integration, and maintenance programs within distinct subtypes of CGE-derived interneurons.


Asunto(s)
Corteza Cerebral/citología , Neuronas GABAérgicas/citología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/fisiología , Interneuronas/citología , Proteínas del Tejido Nervioso/fisiología , Neurogénesis/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Biomarcadores , Calbindina 2/análisis , Moléculas de Adhesión Celular Neuronal/análisis , Linaje de la Célula , Movimiento Celular , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/patología , Proteínas de la Matriz Extracelular/análisis , Neuronas GABAérgicas/metabolismo , Perfilación de la Expresión Génica , Interneuronas/clasificación , Interneuronas/metabolismo , Ratones , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Proteína Reelina , Serina Endopeptidasas/análisis , Proteínas Supresoras de Tumor/deficiencia , Péptido Intestinal Vasoactivo/análisis
13.
Mamm Genome ; 27(1-2): 29-46, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26662512

RESUMEN

The planar cell polarity (PCP) pathway is responsible for polarizing and orienting cochlear hair cells during development through movement of a primary cilium, the kinocilium. GPSM2/LGN, a mitotic spindle-orienting protein associated with deafness in humans, is a PCP effector involved in kinocilium migration. Here, we link human and mouse truncating mutations in the GPSM2/LGN gene, both leading to hearing loss. The human variant, p.(Trp326*), was identified by targeted genomic enrichment of genes associated with deafness, followed by massively parallel sequencing. Lgn (ΔC) mice, with a targeted deletion truncating the C-terminal GoLoco motifs, are profoundly deaf and show misorientation of the hair bundle and severe malformations in stereocilia shape that deteriorates over time. Full-length protein levels are greatly reduced in mutant mice, with upregulated mRNA levels. The truncated Lgn (ΔC) allele is translated in vitro, suggesting that mutant mice may have partially functioning Lgn. Gαi and aPKC, known to function in the same pathway as Lgn, are dependent on Lgn for proper localization. The polarization of core PCP proteins is not affected in Lgn mutants; however, Lgn and Gαi are misoriented in a PCP mutant, supporting the role of Lgn as a PCP effector. The kinocilium, previously shown to be dependent on Lgn for robust localization, is essential for proper localization of Lgn, as well as Gαi and aPKC, suggesting that cilium function plays a role in positioning of apical proteins. Taken together, our data provide a mechanism for the loss of hearing found in human patients with GPSM2/LGN variants.


Asunto(s)
Proteínas Portadoras/genética , Subunidad alfa de la Proteína de Unión al GTP Gi2/genética , Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva Sensorineural/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína Quinasa C/genética , Alelos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Movimiento Celular , Polaridad Celular , Cilios/genética , Cilios/metabolismo , Cilios/patología , Femenino , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Células Ciliadas Auditivas/patología , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Motivos de Nucleótidos , Linaje , Proteína Quinasa C/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
15.
Proc Natl Acad Sci U S A ; 110(9): 3399-404, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23401517

RESUMEN

A recent key requirement in life sciences is the observation of biological processes in their natural in vivo context. However, imaging techniques that allow fast imaging with higher resolution in 3D thick specimens are still limited. Spinning disk confocal microscopy using a Yokogawa Confocal Scanner Unit, which offers high-speed multipoint confocal live imaging, has been found to have wide utility among cell biologists. A conventional Confocal Scanner Unit configuration, however, is not optimized for thick specimens, for which the background noise attributed to "pinhole cross-talk," which is unintended pinhole transmission of out-of-focus light, limits overall performance in focal discrimination and reduces confocal capability. Here, we improve spinning disk confocal microscopy by eliminating pinhole cross-talk. First, the amount of pinhole cross-talk is reduced by increasing the interpinhole distance. Second, the generation of out-of-focus light is prevented by two-photon excitation that achieves selective-plane illumination. We evaluate the effect of these modifications and test the applicability to the live imaging of green fluorescent protein-expressing model animals. As demonstrated by visualizing the fine details of the 3D cell shape and submicron-size cytoskeletal structures inside animals, these strategies dramatically improve higher-resolution intravital imaging.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía Confocal/métodos , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Supervivencia Celular , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Embrión de Mamíferos/citología , Embrión no Mamífero/citología , Proteínas Fluorescentes Verdes , Ratones , Fotones , Proteínas Recombinantes de Fusión/metabolismo
16.
Dev Biol ; 395(1): 62-72, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25218921

RESUMEN

The coordinated polarization of neighboring cells within the plane of the tissue, known as planar cell polarity (PCP), is a recurring theme in biology. It is required for numerous developmental processes for the form and function of many tissues and organs across species. The genetic pathway regulating PCP was first discovered in Drosophila, and an analogous but distinct pathway is emerging in vertebrates. It consists of membrane protein complexes known as core PCP proteins that are conserved across species. Here we report that the over-expression of the murine Ankrd6 (mAnkrd6) gene that shares homology with Drosophila core PCP gene diego causes a typical PCP phenotype in Drosophila, and mAnkrd6 can rescue the loss of function of diego in Drosophila. In mice, mAnkrd6 protein is asymmetrically localized in cells of the inner ear sensory organs, characteristic of components of conserved core PCP complexes. The loss of mAnkrd6 causes PCP defects in the inner ear sensory organs. Moreover, canonical Wnt signaling is significantly increased in mouse embryonic fibroblasts from mAnkrd6 knockout mice in comparison to wild type controls. Together, these results indicated that mAnkrd6 is a functional homolog of the Drosophila diego gene for mammalian PCP regulation and act to suppress canonical Wnt signaling.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Oído Interno/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Animales , Animales Modificados Genéticamente , Western Blotting , Tipificación del Cuerpo/genética , Proteínas Portadoras/genética , Polaridad Celular/genética , Polaridad Celular/fisiología , Células Cultivadas , Proteínas del Citoesqueleto/genética , Proteínas de Drosophila/genética , Oído Interno/citología , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Ojo/citología , Ojo/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/metabolismo , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones Noqueados , Microscopía Confocal , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Alas de Animales/citología , Alas de Animales/metabolismo , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología
17.
EMBO J ; 30(9): 1690-704, 2011 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-21441895

RESUMEN

A hallmark of neurogenesis in the vertebrate brain is the apical-basal nuclear oscillation in polarized neural progenitor cells. Known as interkinetic nuclear migration (INM), these movements are synchronized with the cell cycle such that nuclei move basally during G1-phase and apically during G2-phase. However, it is unknown how the direction of movement and the cell cycle are tightly coupled. Here, we show that INM proceeds through the cell cycle-dependent linkage of cell-autonomous and non-autonomous mechanisms. During S to G2 progression, the microtubule-associated protein Tpx2 redistributes from the nucleus to the apical process, and promotes nuclear migration during G2-phase by altering microtubule organization. Thus, Tpx2 links cell-cycle progression and autonomous apical nuclear migration. In contrast, in vivo observations of implanted microbeads, acute S-phase arrest of surrounding cells and computational modelling suggest that the basal migration of G1-phase nuclei depends on a displacement effect by G2-phase nuclei migrating apically. Our model for INM explains how the dynamics of neural progenitors harmonize their extensive proliferation with the epithelial architecture in the developing brain.


Asunto(s)
Encéfalo/embriología , Ciclo Celular/fisiología , Núcleo Celular/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/fisiología , Modelos Moleculares , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Animales , Polaridad Celular/fisiología , Proliferación Celular , Cartilla de ADN/genética , Técnicas de Silenciamiento del Gen , Ratones , Microscopía Fluorescente , Microesferas , Transporte de Proteínas/fisiología , Interferencia de ARN , Imagen de Lapso de Tiempo
18.
Development ; 139(16): 3051-62, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22791897

RESUMEN

The brain is composed of diverse types of neurons that fulfill distinct roles in neuronal circuits, as manifested by the hippocampus, where pyramidal neurons and granule cells constitute functionally distinct domains: cornu ammonis (CA) and dentate gyrus (DG), respectively. Little is known about how these two types of neuron differentiate during hippocampal development, although a set of transcription factors that is expressed in progenitor cells is known to be required for the survival of granule cells. Here, we demonstrate in mice that Prox1, a transcription factor constitutively expressed in the granule cell lineage, postmitotically functions to specify DG granule cell identity. Postmitotic elimination of Prox1 caused immature DG neurons to lose the granule cell identity and in turn terminally differentiate into the pyramidal cell type manifesting CA3 neuronal identity. By contrast, Prox1 overexpression caused opposing effects on presumptive hippocampal pyramidal cells. These results indicate that the immature DG cell has the potential to become a granule cell or a pyramidal cell, and Prox1 defines the granule cell identity. This bi-potency is lost in mature DG cells, although Prox1 is still required for correct gene expression in DG granule cells. Thus, our data indicate that Prox1 acts as a postmitotic cell fate determinant for DG granule cells over the CA3 pyramidal cell fate and is crucial for maintenance of the granule cell identity throughout the life.


Asunto(s)
Región CA3 Hipocampal/metabolismo , Giro Dentado/citología , Giro Dentado/metabolismo , Proteínas de Homeodominio/metabolismo , Células Piramidales/citología , Células Piramidales/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/crecimiento & desarrollo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Linaje de la Célula/genética , Linaje de la Célula/fisiología , Giro Dentado/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Mitosis , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Neuronas/citología , Neuronas/metabolismo , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética
20.
Biochem Biophys Res Commun ; 435(4): 610-5, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23685146

RESUMEN

Aurora-A kinase (AurA) is a key regulator of cellular processes involving microtubules. It has also been implicated in actin-dependent events, but the mechanisms that underlie the processes are not fully understood. Here we provide genetic and biochemical evidence suggesting that AurA negatively regulates Drok, the only known Rho-kinase orthologue in Drosophila. AurA directly phosphorylates Drok in vitro, and the overexpression of the nonphosphorylatable forms of Drok in vivo causes similar, but much stronger effects than that of wild-type Drok. The defects induced by the nonphosphorylatable forms of Drok are compensated by reducing the function of myosin downstream. Thus, phosphorylation of Drok by AurA normally suppresses Drok activity. We propose that AurA directly regulates actin-dependent processes by phosphorylating Rho-kinase.


Asunto(s)
Drosophila/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Aurora Quinasas , Células Cultivadas , Regulación hacia Abajo/fisiología , Drosophila/citología , Regulación Enzimológica de la Expresión Génica/fisiología , Larva/enzimología , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA